Энциклопедия Русских достижений: Р – Т

Р

Радио

Великий русский физик-электротехник Александр Степанович ПОПОВ (04.03.1859, пос. Турьинские Рудники Пермской губ. — 31.12.1905, С.-Петербург) на заседании Русского физико-химического общества 25 апреля 1895 г. сделал доклад об изобретенной им системе связи без проводов — радио  — и продемонстрировал ее работу. К сожалению, открытие не было запатентовано. На следующее свое крупное изобретение — детекторный приемник  с наушниками — Попов получил российскую привилегию (патент России) № 6066 в ноябре 1901 г. Детекторный приемник с наушниками был долгое время самым распространенным благодаря простоте и дешевизне; под названием «телефонный приемник депеш» устройство получило большую золотую медаль международной выставки 1900 г. в Париже. Приемники Попова широко применялись в России и Франции. В 1897 г. Попов открыл явление радиолокации , внедрил радио на флоте (6 февраля 1900 г.). В 1900 г. приборы радиосвязи были успешно применены при спасении броненосца «Генерал-адмирал Апраксин», терпящего бедствие у о. Гогланд. После спасения броненосца адмирал С. О. Макаров телеграфировал Попову: «От имени всех кронштадтских моряков приветствую Вас с блестящим успехом». Через год, 2 июня 1896 г. в Англии Г. Маркони подал заявку на изобретение аппаратуры для связи без проводов с помощью электромагнитных волн. Ему было отказано со ссылкой на публикации А. С. Попова.

Радиоантенна

Один из основоположников русской радиотехники Петр Николаевич РЫБКИН (14.05.1864, С.-Петербург — 10.01.1948, Кронштадт) родился в семье педагога. С 1894 г. стал помощником А. С. Попова (16.03.1859), участвовал в изготовлении первого в мире радиоприемника А. С. Попова и почти во всех работах, связанных с использованием беспроволочного телеграфа на флоте. В июле 1895 г. изобрел радиоантенну, в мае 1899 г. открыл возможность приема радиосигналов на слух , сделав, по сути, первый в мире радиотелефон  (до этого прием радиосигналов производился на телеграфную ленту). Рыбкин не занимался оформлением свидетельств на свои изобретения. С 1901 г. готовил кадры морских радиоспециалистов в Электротехническом институте в Петербурге. В 1922 г. в Кронштадте организовал электротехнические курсы, выпустившие за 12 лет существования более 2500 квалифицированных специалистов. «Дедушка радистов» — так звали его моряки Балтики. Глядя на экран телевизора, подключенного к антенне, берясь за трубку мобильного телефона, вспомните первооткрывателя антенны и мобильного телефона П. Н. Рыбкина.

Радиограмма практическая

Передача первой практической радиограммы состоялась 6 февраля 1900 г. Изобретатель радио   А. С. Попов передал на построенную им на о. Гогланд радиостанцию приказание ледоколу «Ермак» выйти на помощь рыбакам, унесенным на льдине в море: «Командиру ледокола Ермак. Около Лавенсаари оторвало льдину с 50 рыбаками. Окажите немедленно содействие спасению этих людей». Радиограмму принимал П. Рыбкин. Ледокол выполнил приказ. Первая же практическая радиопередача позволила спасти жизнь полусотни людей.

Радиозонд

Первый в мире радиозонд для исследования атмосферы 30 января 1930 г. был запущен в Павловской аэрологической обсерватории под Ленинградом (Главная геофизическая обсерватория). Радиозонд поднялся на высоту 7,8 км, где была зарегистрирована температура –40,7°. Менее чем через час после запуска в Ленинградское бюро погоды и в Центральный институт прогнозов в Москве было послано первое в мире оперативное аэрологическое сообщение. Открылась возможность получать сведения о состоянии свободной атмосферы до высот вначале около 10–15 км, а впоследствии — 25–30 км. С этого дня началось бурное развитие радиозондирования атмосферы в мире.

Изобретателем первого в мире гребенчатого радиозонда и метода его использования для исследования атмосферы является выдающийся советский ученый-аэролог Павел Александрович МОЛЧАНОВ (06.02.1893, Волосово — октябрь 1941, Ленинград). Конструкция радиозонда Молчанова, наиболее простая и дешевая, выдержала испытания временем и лишь спустя 30 лет была заменена более современными моделями.

Радиокартографирование Венеры

Первый сеанс приема информации о поверхности планеты Венера, переданной с межконтинентальных станций «Венера-15, 16» с помощью радиолокатора бокового обзора «Полюс-В», созданного ОКБ МЭИ, состоялся 16 октября 1983 г. Первичная обработка была осуществлена в Центре космической связи ОКБ МЭИ «Медвежьи Озера». Данные измерений радиолокатора и радиовысотомера служили основой при создании карт Венеры, были составлены фотографическая и гипсометрическая карты. На основе этих карт был выпущен первый атлас рельефа Венеры. В ходе радиокартографирования русские ученые открыли характерные детали рельефа поверхности Венеры и дали им родовые названия: арахноиды — паутинообразные структуры, венцы — кольцевые структуры размером от 150 до 600 км и тессеры — сильнопересеченные возвышенные участки, сверху похожие на паркет или черепицу. Всего русскими учеными открыты 62 тессера, которым даны имена богинь удачи, счастья, судьбы из мифов народов мира. От широты русской души на карте Венеры стало 10 тессер с греческими именами, 4 — с римскими, 4 — латышскими, 6 — литовскими, 4 — египетскими… и лишь 6 — с русскими именами — это тессеры Доли и Недоли, Кручины, Лихо, Суденицы, Встречи, плюс 2 — со славянскими: чешской Судице и белорусской Зирки. Есть русские имена и у других венерианских структур. Так, есть там равнина Снегурочки, Каньон Бабы-яги, один из четырех материков Венеры назван Землей Лады. Он занимает обширное пространство в южном полушарии планеты. Лада — славянская богиня весны, любви и красоты, которой в римской мифологии соответствует Венера.

Радиокартографирование Млечного Пути

Первый сеанс радиокартографирования Млечного Пути проведен 24 июля 1979 г. В. А. Ляховым и В. В. Рюминым на орбитальной станции «Салют-36» с помощью первого в мире космического радиотелескопа КРТ-10 с антенной диаметром 10 м. 10-метровый ажурный «зонтик» антенны радиотелескопа КРТ-10 в паре с 70-метровым радиотелескопом в Крыму образовал сдвоенную телескопную установку — интерферометр с переменной базой диаметром более земного шара. Ученые Института космических исследований АН СССР планируют установить следующий КРТ-10 на автоматическом спутнике и забросить его сначала на 77 тыс. км от Земли, а затем и на 1 млн. км.

После выполнения работ с радиотелескопом его требовалось отделить от космической станции «Салют-6», но телескоп зацепился антенной за элемент стыковочного узла станции. Ляхову с Рюминым пришлось выходить в открытый космос отцеплять антенну.

Радиолокатор многофункциональный

Не имевшая аналогов в мире первая отечественная ракетная система С-25  разрабатывалась под руководством главного конструктора Александра Андреевича РАСПЛЕТИНА (12.08.1908, г. Рыбинск Ярославской губ. — 08.03.1967, Москва); впервые в мировой практике ее радиолокатор был многофункциональным. Он обеспечивал не только обнаружение и автоматическое сопровождение до 20 самолетов в секторе 60°, но и осуществлял одновременное наведение на самолеты до 20 ракет. Захват ракет после старта осуществлялся автоматически. Система несколько раз модернизировалась, всегда опережала возможности авиации противника и стояла на боевом дежурстве более 30 лет. До того, в 30-е годы, Расплетин создавал первую отечественную систему электронного телевидения, позже разработал систему С-75, которой за годы войны во Вьетнаме было уничтожено более двух тысяч американских самолетов, в т. ч. несколько десятков стратегических бомбардировщиков B-52. Вьетнамская война дала такую рекламу нашим зенитным системам, что трудно найти страну, которая не закупила бы их, затем системы нового поколения С-200, С-300.

Имя академика Расплетина носит НПО «Алмаз», улицы в русских городах, золотая медаль Академии наук в области радиотехнических систем управления, кратер на Луне.

Радиолокаторы

Павел Кондратьевич ОЩЕПКОВ (11.06.1908, дер. Зуевы Ключи Вятской губ. (ныне Удмуртия) — 01.12.1992) учился и работал в Пермской обл. Почетный член ряда академий, в т. ч. России, США и Германии. В 1932 г. впервые в мире реализовал на практике идею радиолокации. Первые наши радиолокаторы прошли испытания под Москвой 21 августа 1934 г. Ощепков назвал их «электровизоры ПВО». В 1937 г. Ощепкова арестовали по делу Тухачевского, и он 10 лет просидел в лагерях. Группа под руководством Ю. Кобзарева реализовала идеи Ощепкова, создав станцию «РУС-2» («радиоулавливатель самолетов»). 22 июля 1941 г., когда немцы бросили на Москву 250 самолетов, чтобы сровнять город с землей, немецкую авиацию обнаружил боевой расчет станции «РУС-2» за полтора часа до подлета к городу. Обнаруженные самолеты были уничтожены. В 1941 г. Сталин по просьбе английского премьера Черчилля разрешил передать англичанам документацию по радиолокатору, чем те не преминули воспользоваться. Уже после войны английский премьер Черчилль заявил, что «англосаксы подарили миру самое великое изобретение XX века — радиолокацию!».

Ощепков заложил основы новой отрасли науки и техники — интроскопии  (прямое оптическое видение во всех непрозрачных средах и телах), по принципу которой работают томографы. Ему же принадлежит и идея энергоинверсии  — извлечения энергии из космического излучения — возможного направления будущего энергетики.

На надгробной плите Ощепкова высечена надпись: «Отцу радиолокации, интроскопии, энергоинверсии от ЭНИН» (Институт энергоинверсии, созданный Ощепковым).

Радионавигации средства

Основатель теоретической радиотехники , создатель радиотелескопов , средств радионавигации, космической радиосвязи  Владимир Александрович КОТЕЛЬНИКОВ (24.08.1908, Казань — 11.02.2005, Москва) основал ОКБ МЭИ. Директор института радиотехники и электроники Академии наук России. Академик АН СССР (России) по Отделению технических наук (радиотехника).

Радиопередача речи

Впервые в мире 27 февраля 1919 г. состоялась радиопередача речи: из Нижегородской радиолаборатории в 10 ч. 2 мин. с помощью дуговых генераторов лаборант Петр Остряков передал в эфир: «Алло, говорит Нижегородская лаборатория. Раз, два, три. Как слышно?». (Управляющий лабораторией — В. М. Лещинский, ученик А. С. Попова.) До этого в эфир выходили только сигналы азбуки Морзе. Вторыми с речью в эфир вышли США в 1920 г.

Радиопомехи

Радиопомехи были впервые применены 15 апреля 1904 г. при обороне Порт-Артура. В результате была подавлена связь корректировщиков огня станциями броненосца «Победа» и берегового поста «Золотая гора». Отмечается как День специалиста радиоэлектронной борьбы.

Радиоуправление

Русский изобретатель, профессор, основоположник радиоуправления Николай Дмитриевич ПИЛЬЧИКОВ (09.05.1857, Полтава — 06.05.1908, Харьков). Спроектировал стратостат с герметичной кабиной  для подъема на высоту до 30 км (1878). Изобрел радиоуправляемые устройства  для радиоуправляемого запуска (25 марта 1898 г.) минных взрывателей, приведения в действие семафоров, маяков, часов, а также протекторы «свой–чужой»  для этих радиоустройств, отсеивающие посторонние сигналы и принимающие только «свои». 25 марта 1898 г. провел публичную лекцию с демонстрацией опытов по радиоуправлению: изобретатель дистанционно зажег огни модели маяка, произвел выстрел из пушки, взорвал мину, на расстоянии привел в движение модель железнодорожного семафора. Провел первые опыты по радиомеханике  на два месяца ранее Теслы, создал первые в России метеостанции. Французы оценили протектор Пильчикова в 1 млн. франков, но автор строго ориентировался на интересы отечественного морского ведомства. Избран действительным членом Тулузской академии наук, Международного общества электриков и различных других ученых обществ в России, Франции, Австрии, Бельгии, Германии и Северо-Американских Соединенных Штатах.

Радиоустановка для самолета

Русский летчик инженер-подполковник Д. М. Сокольцов в Гатчине 22 ноября 1911 г. осуществил первую радиопередачу с самолета на землю , сконструировал радиоустановку для самолета. Гарнитура включала закрепленный на груди передатчик, отдельный приемник, установленный под сиденьем электромотор и спущенный с хвоста самолета оголенный провод длиной 35 м, заканчивавшийся металлическим кругом метрового диаметра, служившим антенной. Общий вес гарнитуры составлял около 30 кг.

Ракета глобального нацеливания

Конструктор ракетно-космической техники, основатель нового направления в области стратегических ракетных вооружений Михаил Кузьмич ЯНГЕЛЬ (25.10.1911, дер. Зырянова Иркутской губ. — 25.10.1971, Москва) родился в сибирской деревне в семье крестьянина. Занимался созданием ракет на стабильных высококипящих компонентах топлива, ставших основой ракетных войск стратегического назначения. Разработал межконтинентальные ракеты Р-12, Р-14, Р-16, составившие основной ракетный потенциал страны. Ракета Р-16 с моноблочной головной частью массой 140 т превосходила по своим основным параметрам американские межконтинентальные ракеты типа «Атлас» и «Минитмен-1». Его 180-тонная орбитальная баллистическая ракета Р-36, которая могла поражать все цели на поверхности Земного шара, была принята на вооружение в 1968 г. На базе ракеты Р-12 была разработана легкая ракета-носитель «Космос», на базе ракеты Р-14 — «Интеркосмос», на базе ракеты Р-36 — средний носитель «Циклон».

В пос. Березняки Нижнеилимского р-на Иркутской обл. находится дом-музей М. К. Янгеля. Памяти конструктора посвящены историко-художественный музей в г. Железногорск-Илимский, Государственное конструкторское бюро «Южное», медаль Федерации космонавтики СССР, астероид и кратер на Луне, пик на Памире, океанский сухогруз. Его именем названы улицы в Москве, Киеве, Днепропетровске, Братске, Байконуре, Красноармейске, Мирном, Знаменске.

Ракета класса «воздух-воздух» сверхманевренная

5 ноября 1983 г. на вооружение принята ракета класса «воздух-воздух» Р-73Э производства Государственного машиностроительного конструкторского бюро «Вымпел» (по обозначению НАТО — AA-11 Archer — «Лучник») — советская/российская управляемая ракета класса «воздух-воздух» с инфракрасной системой самонаведения для высокоманевренного ближнего воздушного боя. Ставится на самолеты «МиГ» от 21 до 35, «Су» от 24 до 35, Як-141, ПАК ФА, вертолеты. Импортируется 18 странами.

Ракета на гибридном топливе

С полигона в Нахабино 17 августа 1933 г. была запущена первая русская ракета на гибридном топливе «ГИРД-09» конструкции Михаила Клавдиевича ТИХОНРАВОВА (16.07.1900, Владимир — 04.03.1974, Москва). Ракета изготовлена под руководством С. П. Королёва. В 20-е годы Тихонравов создал серию рекордных планеров. Руководил разработкой первой русской ракеты с жидкостным ракетным двигателем (17 августа 1933 г.).

Ракета «Протон» — самая мощная

Ракета-носитель «Протон» при первом пуске 16 июля 1965 г. с космодрома Байконур вывела на околоземную орбиту советский спутник для изучения космических лучей и взаимодействия с веществом сверхвысоких энергий «Протон-1» массой 12,2 т. Самая мощная ракета в мире была разработана КБ Челомея (завод им. Хруничева). До сих пор многие запуски космических аппаратов осуществляет эта ракета.

Ракета с боевым лазером

Первые испытания 80-тонной ракеты-носителя «Энергия» с макетом боевого лазера «Скиф-ДМ» (название для открытой в то время печати — «Полюс») разработки НПО «Салют» проведены 15 мая 1987 г. Успешный запуск «Скифа» означал бы полную победу СССР в борьбе за ближний космос: «Скиф» мог долго летать на орбите, поражая при этом своей лазерной пушкой аппараты противника. По указанию М. Горбачева «Скифы» были сожжены. Через четверть века в 2010 г. были проведены испытания боевого ракетного лазера США.

Ракета с отделяющейся головной частью

Первая ракета с отделяющейся головной частью и дальностью стрельбы 590 км Р-2 была запущена с полигона Капустин Яр 21 октября 1950 г. В 1997 г. к 40-летию начала космической эры (4 октября 1957 г.) в г. Королёве открыт монумент. На постаменте установлена баллистическая ракета Р-2.

Ракетно-космические системы

Сергей Павлович КОРОЛЁВ (30.12.1906, Житомир — 14.01.1966, Москва) — один из двух главных создателей ракетно-ядерного щита России, первооткрыватель эры освоения человечеством космического пространства, конструктор первых в мире ракетно-космических систем, создатель первого русского ракетного планера, первой русской крылатой ракеты, многоступенчатой межконтинентальной ракеты .

С помощью его ракеты был выведен на орбиту первый искусственный спутник Земли  (4 октября 1957 г.). Под его руководством были построены и запущены первые пилотируемые космические корабли , отработана аппаратура для полета человека в космос , осуществлены выход человека в открытый космос  и возвращение спутника на Землю , созданы искусственные спутники Земли серий «Электрон» и «Молния-1», многие спутники серии «Космос», первые межпланетные разведчики  «Зонд». Он первым послал космические аппараты к Луне, Венере, Марсу, Солнцу.

Его имя носит город в Московской обл., Самарский государственный аэрокосмический университет, улицы многих городов, два научно-исследовательских судна, высокогорный пик на Памире, перевал на Тянь-Шане, астероид, талассоид на Луне. Каждый год в этот день ветераны космоса возлагают цветы к бюсту Королёва на Аллее космонавтов в Москве у ВДНХ. Сказано С. П. Королёвым: «Кто хочет работать — ищет средства, кто не хочет — причины»; «Космонавтика имеет безграничное будущее, и ее перспективы беспредельны, как сама вселенная».

Ракеты сухопутного подвижного базирования

В конце 1993 г. Россия заявила о разработке новой отечественной ракеты, призванной стать основой перспективной группировки ракетных войск стратегического назначения. Разработку ракеты 15Ж65 (РС-12М2), получившей название «Тополь-М», вела российская кооперация предприятий и конструкторских бюро. Головной разработчик ракетного комплекса — Московский институт теплотехники. Ядерный боезаряд 550 кт создан под руководством Георгия Николаевича Дмитриева в Арзамасе-16. Ракета может оснащаться разделяющимися головными частями.

Генеральный конструктор транспортно-установочного агрегата  «Тополь-М» — Александр Васильевич Титов (род. 20.08.1938).

По классификации НАТО ракеты назвали SS-27. Они превосходили по своим возможностям все имеющиеся в мире. Дальность их полета — 10 тыс. км, большая точность поражения цели. Эти ракеты способны преодолеть любые системы противоракетной обороны (ПРО) как существующие, так и те, которые будут созданы в ближайшей перспективе.

Первый пуск межконтинентальной баллистической ракеты «Тополь-М» состоялся в Плесецке 20 декабря 1994 г.

24 декабря 1997 г. в Саратовской обл. поставлен на боевое дежурство первый полк межконтинентальных баллистических ракет (МБР) «Тополь-М» в варианте сухопутного подвижного базирования.

Ранцевый парашют

Глеб Евгеньевич КОТЕЛЬНИКОВ (18.01.1872, С.-Петербург — 22.11.1944, Москва) — изобретатель. Под впечатлением от гибели летчика Л. М. Мациевича в 1910 г., свидетелем которой он был, и вспомнив использовавшуюся петербургскими модницами миниатюрную сумочку, из которой они вынимали сложенный вдесятеро большой платок, изобрел ранцевый парашют. Успешное испытание первого в мире ранцевого парашюта Глеба Котельникова было произведено 9 ноября 1911 г., принцип его устройства и действия остался неизменным и до наших дней. В докладной записке военному министру В. А. Сухомлинову изобретатель просил субсидию на постройку опытного образца ранцевого парашюта и сообщал: «4 августа с. г. в Новгороде кукла сбрасывалась с высоты 200 м, из 20 раз — ни одной осечки. Формула моего изобретения следующая: спасательный прибор для авиаторов с автоматически выбрасываемым парашютом… Готов испытать изобретение в Красном Селе…». В декабре 1911 г. Котельников попытался зарегистрировать свое изобретение в России, однако патента не получил. Вторую попытку зарегистрировать свое изобретение он предпринял уже во Франции 20 марта 1912 г., получив патент за № 438612: Парашют РК-1 (русский, Котельникова, модель первая). 5 января 1913 г. студент Петербургской консерватории Оссовский впервые прыгнул с парашютом РК-1 в Руане с 60-метровой отметки моста, перекинутого через Сену.

В дальнейшем изобретатель создал новые модели (в т. ч. ряд грузовых парашютов), которые были приняты на вооружение ВВС. Всего за Г. Котельниковым числится 17 изобретений. Деревня Сализи близ Гатчины, где в лагере Офицерской воздухоплавательной школы в 1912 г. изобретатель испытал созданный им парашют, названа Котельниково.

Расовая психология

Создатель науки расовой психологии, профессор кафедры систематического и клинического учения о нервных и душевных болезнях университета св. Владимира в Киеве Иван Алексеевич СИКОРСКИЙ (26.05.1842, с. Антоново Киевской губ. — 01.02.1919) родился в многодетной семье священника. Первым изобразил системную картину психологии различных национальностей на основе их наследственных расово-биологических различий. Он отец русского авиаконструктора И. И. Сикорского. Автор трудов по вопросам психических эпидемий (массовых психозов), психогигиены и психопрофилактики, логопедии, психологии детей, педагогике. В 1912 г. основал в Киеве первый в мире Институт детской психологии . В революционные годы он принял активное участие в деятельности Киевского Клуба русских националистов, постоянно публиковался в главном органе киевских монархистов — газете «Киевлянин». «На киевлянах лежит высший долг перед городом и родиной: мы должны укреплять возникшую здесь русскую твердыню. Пора нам сказать: мы — сыны великого народа и здесь, в историческом Киеве, хозяева — мы! Городское управление матери городов русских должно быть русским… Мы должны решительно сказать: мы — русские, и Киев — наш. Надо, чтобы Киев богател, но богател как национально-русский центр», — отмечал в одной из своих речей Сикорский. По своим политическим убеждениям Сикорский был монархистом и русским националистом, полагая, что «националисты во всех странах — это такие люди, которые хотят показывать душевные качества и духовную мощь своего народа». И. А. Сикорский был членом Русского Антропологического общества при С.-Петербургском университете и вместе с другими киевскими профессорами пытался основать такое же общество в Киеве. В своих антропологических работах он относил русских к ариям.

В 1913 г. Сикорский подтвердил свою репутацию выдающегося ученого и бесстрашного русского патриота в ходе расследования обстоятельств убийства отрока А. Ющинского. Несмотря на травлю и угрозы, он не побоялся подтвердить своим авторитетом заключение о ритуальном характере убийства христианского мальчика. Его компетентная экспертиза во многом повлияла на вынесение вердикта присяжными о ритуальном убийстве: «Убийство А. Ющинского было совершено не душевнобольными, а лицами, привыкшими к убою животных, с целью, быть может, расовой мстительности, а еще вернее — в виде религиозного акта».

Уже после смерти И. А. Сикорского сын издал в 1931 г. в США под заголовком «Книга жизни» объемное издание «Психологической христоматии» (именно так, через букву «и», нужно писать это слово, заявлял Сикорский). И только в 2012 г. эта книга издана в России.

Расписывая алтарь во Владимирском соборе Киева, В. Васнецов писал образ св. Иоанна Златоуста с Ивана Сикорского.

Расовая типология

Иосиф Егорович ДЕНИКЕР (22.02.1852, Астрахань — 18.03.1918, Париж) — создатель общепринятой современной расовой типологии. Классификация рас Деникера использует только физические признаки, т. е. основана на строго антропологических принципах в отличие от существовавшей до него в расологии мешанины из антропологии и этнографии, когда учитывались, кроме физических, признаки лингвистические, психологические. Ему принадлежит определение нордической (северной) расы — длинноголовые (долихокефальные), высокорослые, светловолосые и светлоглазые. Он же опроверг романтическую концепцию арийской расы, поскольку арийская общность основана в первую очередь не на физических признаках, а на общности языков индоевропейских народов.

Реактивная гражданская авиация

Первый раз поднялся в небо первый турбореактивный гражданский самолет Ту-104 17 июня 1955 г. Самолет был разработан КБ А. Н. Туполева на базе бомбардировщика Ту-16 и оснащен двумя турбореактивными двигателями РД-3М Микулина. По мнению большинства авиационных историков, эксплуатация этого самолета открыла эру реактивной гражданской авиации. Уже 22 сентября 1956 г. на самолете СССР-Л5415 открылась линия Внуково–Тбилиси.

Реактивный летательный аппарат (проект)

23 марта 1881 г. Николай Иванович КИБАЛЬЧИЧ (19.10.1853, г. Короп Черниговской губ. — 03.04.1881, С.-Петербург) создал в тюрьме проект летательного аппарата на реактивной тяге для полета человека. В проекте Кибальчич рассмотрел устройство порохового ракетного двигателя, управление полетом путем изменения угла наклона двигателя, программный режим горения, обеспечение устойчивости аппарата… Повешен за участие в подготовке покушений на царя Александра II. Именем Кибальчича названы кратер на Луне, улица в Москве.

Реактивный НИИ

Первый в мире реактивный научно-исследовательский институт сформирован 21 сентября 1933 г. в Москве на базе ленинградской Газодинамической лаборатории (ГДЛ), основанной Н. И. Тихомировым, и московской группы по изучению реактивного движения (ГИРД), возглавляемой С. П. Королёвым, и подчинен постановлением Совета Труда и Обороны Народному Комиссариату тяжелой промышленности. Директор — И. Т. Клеймёнов, заместитель — С. П. Королёв. В учреждении разрабатывалась ракетная техника, в т. ч. ракетная установка «Катюша».

За огромный вклад в отечественную и мировую науку и технику в 1966 г. кратерной цепочке (длиной 540 км) на обратной стороне Луны присвоено наименование РНИИ.

Реактивный противоторпедный комплекс

3 января 2001 г. конструкторское бюро «Сплав» в Туле впервые в мировой практике разработало реактивный комплекс противоторпедной защиты кораблей «Удав-1М» для организации надежной обороны надводных кораблей от торпед в ближней зоне. Комплекс может поражать торпеды, атакующие корабль, неприятельские подводные лодки, подводные диверсионные силы и средства. Комплекс «Удав-1М» успешно защищает тяжелый авианесущий крейсер «Адмирал Кузнецов», флагман российского флота «Петр Великий» и другие новейшие российские корабли.

Реакторы с теплоносителями на жидком металле

Реакторы с теплоносителями на жидком металле созданы на основе работ Г. И. Марчука (08.06.1925, с. Петро-Херсонец Оренбургской губ. — 24.03.2013, Москва). Гурий Иванович МАРЧУК — президент Российской академии наук в 1986–1991 гг., математик и физик, академик, специалист в области вычислительной математики, физики атмосферы, геофизики, математического обеспечения ядерной физики, разработчик ядерных реакторов для подводных лодок  и атомных электростанций, создатель математических моделей в экологии, иммунологии и медицине. Его книга «Методы расчета ядерных реакторов» издана в СССР, США, Китае, а созданные им алгоритмы численного решения уравнений переноса нейтронов  служат основой для расчета критических параметров ядерных реакторов.

Реакция Арбузова (синтеза фосфороорганических соединений)

Один из важнейших методов синтеза фосфороорганических соединений — «реакцию Арбузова» — открыл русский химик-органик, академик, основатель русской школы фосфоро-органических соединений Александр Ерминингельдович АРБУЗОВ (30.08.1877, с. Арбузов-Баран Казанской губ. — 21.01.1968, Казань). В работах по истории химии Арбузов показал вклад в науку, сделанный русскими химиками.

Реконструкция пищепроводящих и дыхательных путей

Реконструкцию пищепроводящих и дыхательных путей впервые осуществил русский хирург, основатель русской пластической хирургии Федор Михайлович ХИТРОВ (08.02.1903, г. Грозный — 1986). Им разработан ряд новых методов реконструкции врожденных и приобретенных дефектов лица с использованием прилежащих тканей, решена проблема формирования носа с использованием тканей из отдельных участков человеческого тела. Ему удалось вернуть в строй большое число бойцов в Великую Отечественную войну.

Рельсовые заводские пути

Русский гидротехник, изобретатель в области горнозаводского дела Козьма Дмитриевич ФРОЛОВ (29.06.1726, Полевской завод, Урал — 09.03.1800, Барнаул). В 1763–1765 гг. на р. Корбалихе на Алтае под его руководством впервые в мире был создан на отведенных водах реки гигантский центральный водяной двигатель  горного завода, позволивший механизировать все производственные процессы (откачку воды из рудников, подъем и транспортировку руды и т. п.). Внутризаводские рельсовые пути также были построены на этом заводе впервые в мире. В иностранной литературе утверждается, что первые заводы с централизованным двигателем были построены на прядильных фабриках английского предпринимателя Аркрайта, но двигатель Аркрайта был создан в 70-х годах, на 10 лет позже двигателя Фролова. Также впервые в мире на алтайском заводе Фролов применил движение вагонеток по рельсам канатами, наматывающимися на барабаны , — широко распространившиеся впоследствии по всему миру и в т. ч. до сих пор таскающие миллионы лифтов. Завод Фролова только за 1766 г. дал более 674 пудов серебра и 21 пуда золота. Позднее на Змеиногорском руднике Фролов возвел еще более грандиозный центральный гидродвигатель с колесами высотой с пятиэтажный дом. Земляная плотина (высотой 18 м) и некоторые другие сооружения, построенные на р. Змеевке, сохранились до настоящего времени.

Рефлексология

Русский невропатолог, психиатр и психолог Владимир Михайлович БЕХТЕРЕВ (20.01.1857, с. Сорали Вятской губ. — 24.12.1927, Москва) создал в Петербурге Психоневрологический институт (1907) и Институт мозга. Основоположник рефлексологии, открыл проводящие пути мозга, центры движения мозга  и другие участки мозга. Организовал в Петербурге Общество психоневрологов и Общество нормальной и экспериментальной психологии и научной организации труда. Установил и выделил ряд рефлексов, синдромов и симптомов. Физиологические рефлексы Бехтерева  позволяют определить состояние пациента. Создал ряд лекарственных препаратов. «Микстура Бехтерева» широко использовалась в качестве успокаивающего средства. Мнение правнука Бехтерева — Медведева С. В., директора «Института мозга человека»: «Предположение, что мой прадед был убит, это не версия, а вещь очевидная. Его убили за диагноз Ленину — сифилис мозга».

Робототехника

Пафнутий Львович ЧЕБЫШЁВ (04.05.1821, с. Окатово Боровского у. Калужской губ. — 26.11.1894, С.-Петербург) — профессор математики, создатель Петербургской научной школы, член многих иностранных академий. Он получил фундаментальные результаты в законе больших чисел, асимптотическом распределении простых чисел, теории приближения функций . Одна из его классических математических работ называется «О кройке платьев», в которой он учит оптимальному раскрою  ткани или любых плоских поверхностей с минимальными отходами. Его первые в мире метод теоретического расчета выпрямляющих механизмов и знаменитая «формула Чебышёва», показывающая, при каких условиях проектируемая система рычагов, шарниров и колес будет осуществлять требуемые движения, — стали основой робототехники. Изобрел более 40 механизмов, включая стопоходящую машину  — прообраз роботов.

Известный математик Шарль Эрмит заявил, что Чебышёв «является гордостью русской науки и одним из величайших математиков Европы», а профессор Стокгольмского университета Миттаг-Леффлер утверждал, что Чебышёв — гениальный математик и один из величайших аналитиков всех времен. Он избран членом 25 различных академий и научных обществ, состоял почетным членом всех российских университетов.

Именем Чебышёва названа премия АН по математике, кратер на Луне, астероид 2010 Chebyshev, математический журнал «Чебышёвский Сборник», суперкомпьютер в СКИФ МГУ, а также многие объекты в современной математике.

Русская школа «мягкой» дрессировки

Новую русскую школу «мягкой» дрессировки создал Владимир Леонидович ДУРОВ (25.06.1863, Москва — 03.08.1934, там же) — артист цирка, вместе с братом Анатолием в 1912 г. организовал в своем доме в Москве театр зверей (Уголок им. В. Л. Дурова).

Похоронен на Новодевичьем кладбище. Именем Дурова названа улица в Москве (бывшая Старая Божедомка). В 1963 и 1989 гг. были выпущены почтовые марки СССР, посвященные В. Л. Дурову.

Русский способ искусственного осеменения икры

Ихтиолог, заложивший основы промышленного рыбоводства в России, Владимир Павлович ВРАССКИЙ (Враский) (26.08.1829, имение Никольское Демянского у. Новгородской губ. — 27.12.1862) родился в дворянской семье. Заложил основы метода криоконсервации рыбьих молок . В 1854 г. разработал «сухой» способ искусственного осеменения и инкубации икры, известный в настоящее время под именем «русского». В 1856–1857 гг. построил на р. Пестовке в с. Никольском первый в России рыбоводный завод для разведения лососей и сигов, ставший еще при его жизни главным центром научно-исследовательской работы по рыборазведению в России. Завод был признан образцовым в Европе и был поддержан Министерством государственных имуществ. Рассказывают, что, будучи еще студентом Дерптского университета, Врасский поспорил с сыном богатого петербургского банкира, что знание и труд важнее богатства и обещал с помощью труда нажить за 10 лет 100 тыс. руб. Ставка в споре — обязательство всех бывших при споре, где бы они ни были к тому времени, привезти за свой счет в установленный город шампанское и напоить всех допьяна. Врасский выиграл.

 

С

Сальто на бревне

Сальто на бревне впервые в мире выполнила четырехкратная олимпийская чемпионка Ольга КОРБУТ, белорусская гимнастка (род. 16.05.1955, Гродно). Она же первой исполнила уникальный элемент «Петлю Корбут».

Самозарядная винтовка

Всемирно известную самозарядную «снайперскую винтовку Драгунова»  (СВД), которую специалисты нарекли лучшей снайперской винтовкой XX века, создал в Ижевске Евгений Федорович ДРАГУНОВ (20.02.1920, Ижевск — 04.08.1991, там же)., конструктор стрелкового оружия, разработчик высокоточных винтовок: МЦ-50, МЦВ-50, «Зенит», «Стрела», «Тайга», СМ, Биатлон-7-2 и других, многие из которых не раз приносили нашим спортсменам золото на международных соревнованиях. Французский журнал Armées & Défense писал про его винтовку: «Главное впечатление — эффективность и функциональность: ничего лишнего. Ничего сложного или хрупкого в обращении. Остается только одно — прицеливаться и стрелять». По свидетельству швейцарского военного журнала Schweizer Waffen-Magazin, винтовка СВД уверенно перекрывает нормы НАТО по кучности стрельбы для снайперских винтовок. В американской печати отмечалось, что винтовка СВД считается лучшей винтовкой XX столетия.

Винтовка СВД стала основой для разработки на «Ижмаше» самозарядных охотничьих карабинов семейства «Медведь» и «Тигр», популярных в России и за рубежом. Пистолет-пулемет «КЕДР» (Конструкция Евгения Драгунова) был принят на вооружение МВД России.

Самозатачивающийся инструмент

Гениальный изобретатель Александр Михайлович ИГНАТЬЕВ (01.11.1879 — 27.03.1936) изобрел вращающийся чашковидный резец для холодной резки металла без трения, самозатачивающийся режущий инструмент, рабочая часть которого состояла из нескольких металлических слоев разной твердости (он использовал при этом наблюдение над вечноострыми клыками и когтями животных). Инструмент был запатентован в СССР и в ряде зарубежных стран. Его изобретения многократно увеличивали эффективность резки металлов. Все резцы, ножи, топоры, пилы, зубья врубовых машин и ковши экскаваторов, сделанные по методу Игнатьева, не тупятся во время работы, а становятся острее. Инструмент был запатентован в СССР (патент № 14451, 1926), США, Англии, Франции, Германии, Италии и Бельгии. Сконструировал оригинальный прицельный прибор для стрельбы по воздушным целям, сварочный пресс и лентосварочную машину, позволяющие сваривать полосы или пластины разной толщины.

Самолет взлетел

Впервые летательный аппарат тяжелее воздуха оторвался от земли 8 июля 1882 г. в Красном Селе. Это был первый пробный полет первого в мире самолета контр-адмирала Александра Федоровича МОЖАЙСКОГО спустя 2 года после подачи заявки на патент (16 июня 1880 г.) и почти год спустя после получения первого в мире патента на самолет  (привилегии России на воздухолетательную машину).

Впервые была практически доказана возможность полета человека на аппарате тяжелее воздуха. Самолет братьев Райт полетел только через 20 лет. Можайский одновременно проектировал и мотор самолета. Однако изобретение Можайского было объявлено военной тайной, никакой помощи изобретателю не оказывалось. Царские чиновники и иностранцы на русской службе сделали все, чтобы не только успехи русского изобретателя, но и его имя были забыты.

Самолет с криогенными двигателями

Самолет с криогенной силовой установкой на жидком водороде впервые поднялся в воздух 15 апреля 1988 г. Ту-155 пилотировал летчик-испытатель В. А. Севанькаев. В Самаре готовится к испытаниям самолет Ту-156 (главный конструктор — В. А. Андреев) с тремя криогенными двигателями Н. Кузнецова НК-89 на сжиженном природном газе (СПГ) — самом чистом и дешевом ископаемом топливе. Как и водород, СПГ значительно меньше загрязняет окружающую среду, его теплотворная способность на 15% выше, чем у авиационного керосина. Да и хранить СПГ в жидком виде гораздо проще, чем водород.

Самооборона без оружия (самбо)

16 ноября 1938 г. был издан приказ «О развитии борьбы вольного стиля» (так тогда называли самбо). Это день рождения самбо (самообороны без оружия) — стиля борьбы, родившегося в России, которая поныне не отдает своего первенства в этом виде спорта. Основоположники борьбы самбо — Виктор Афанасьевич Спиридонов (основатель стиля «самоз»), Василий Сергеевич Ощепков (чьим учеником был Харлампиев) и преподаватель МЭИ Анатолий Аркадьевич Харлампиев, первым возглавивший организованную в 1938 г. «Всесоюзную секцию борьбы вольного стиля» (будущую федерацию самбо).

29 ноября 1964 г. в г. Кстово Горьковской обл. М. Г. Бурдиковым (19.11.1938, дер. Акулово Ярославской обл. — 08.02.2013, Кстово) основана школа самбо, преобразованная через 10 лет во Всемирную Академию самбо — абсолютный лидер мирового самбо. Академия имеет свыше 10 тыс. кв. м тренировочных площадей, собственный туристическо-гостиничный комплекс на 600 человек. Представители Кстовской школы завоевали 40 золотых медалей чемпионатов мира, 65 — на розыгрышах кубка мира.

Сбалансированное развитие производства средств производства и предметов потребления

Экономическую реформу, направленную на сбалансированное развитие производства средств производства и предметов потребления в противовес господствовавшей до этого экономике опережающего развития средств производства, разработал в 1960-х гг. Алексей Николаевич КОСЫГИН (08.02.1904, С.-Петербург — 18.12.1980, Москва) — экономист, с 1964 г. — председатель Совета Министров СССР. Руководство КПСС не позволило провести реформу Косыгина до конца, уволив его в октябре 1980 г. Через четверть века переимчивые китайцы подхватили и полностью реализовали косыгинские реформы в своей стране, в результате вырвавшись на самые передовые позиции в мировой экономике.

Косыгин похоронен у Кремлевской стены. Его именем названы улицы в Москве и Петербурге, Текстильный университет в Москве, лихтеровоз, памятники установлены в Москве, Ленинграде, Камышине, Харькове, Архангельском.

Сбитый реактивный самолет

Впервые в истории 19 февраля 1945 г. сбит в воздушном бою реактивный самолет противника. В районе р. Одер летчики 176-го Гвардейского истребительного авиаполка второй воздушной армии дважды Герой Советского Союза майор Иван Кожедуб и майор Дмитрий Титаренко на самолетах Ла-7 сбили германский реактивный истребитель Ме-262, принятый на вооружение люфтваффе в 1944 г.

Сварка металлов дуговая электрическая

8 июля 1890 г. Николай Гаврилович СЛАВЯНОВ (23.04.1854, с. Никольское Задонского у. Воронежской губ., ныне Липецкой обл. — 05.10.1897, Пермь) сделал заявку на изобретение способа борьбы с раковинами и пустотами в металлических отливках с помощью электроподогрева. Она была утверждена 13 июля 1891 г., и изобретатель получил привилегию «на способ электрического уплотнения металлических отливок ».

Способ позволил устранить существенный дефект мартеновской стали — пузырчатость. В октябре 1888 г. Славяновым был изобретен усовершенствованный способ электрической сварки металлов металлическим электродом . Электрическая сварка металлов стала применяться на Мотовилихинском заводе с октября 1888 г. Привилегию на это изобретение Славянов получил тоже в 1891 г. В 1890–1892 гг. Славянов получил патенты на изобретение дуговой электрической сварки во Франции, Англии, Австро-Венгрии, Бельгии, Германии, США, Швеции, Италии. В Германии первое место по количеству и весу обрабатываемых способом Славянова деталей занимали заводы Круппа в Эссене. В США больше всего электрическую сварку начали применять на машиностроительных заводах и в железнодорожных мастерских.

К Славянову на завод приходили ходоки из окрестных сел сваривать разбитые колокола. Когда в одном из таких случаев ходоки ушли с починенным колоколом, заплатив за работу по себестоимости, а на остаток от собранных в селе денег на операцию хорошо отметили это событие и принялись на радостях лупить в колокол изо всех сил так, что он снова треснул, то трещина прошла не по сварному шву, а поперек него.

В 1893 г. на Всемирной электротехнической выставке в Чикаго изобретателю была присуждена золотая медаль «за дуговую электрическую сварку». Там экспонировался «Славяновский стакан», сплавленный из разных металлов: томпак, никель, сталь, чугун, медь, нейзильбер, бронза.

Большинство современных способов сварки основаны на идеях русских изобретателей Н. Н. Бенардоса и Н. Г. Славянова.

Сварка под водой

Выдающийся ученый в области сварки металлов Константин Константинович ХРЕНОВ (13.02.1894, г. Боровск Калужской губ. — 12.10.1984, Киев). В 1932 г. впервые в мире создал и реализовал на практике процесс электродуговой сварки и резки под водой. Предложил способ автоматической сварки с подачей гранулированного флюса. Разработал способы сварки чугуна, газопрессовой сварки, дефектоскопии сварных соединений, плазменной резки, холодной сварки давлением; источники электропитания для дуговой и контактной сварки, керамические флюсы, электродные покрытия и многое другое.

Сверхзвуковой пассажирский самолет

31 декабря 1968 г. состоялся первый полет первого в мире сверхзвукового пассажирского самолета Ту-144 русского авиаконструктора, академика Алексея Андреевича ТУПОЛЕВА, создателя сверхзвукового стратегического бомбардировщика-ракетоносца Ту-160, самолета Ту-204, сына А. Н. Туполева. На самолете Ту-144 в испытательном полете была достигнута скорость 2560 км/ч. Самолет Ту-144 демонстрировался на Парижском авиационном салоне. В 1971–1972 гг. самолет Ту-144 совершил ряд демонстрационных полетов по столицам социалистических стран — Праге, Берлину, Варшаве, Софии, Будапешту. Везде, где появлялся Ту-144, он вызывал интерес не только научных кругов, но и широкой публики, и наглядно демонстрировал успехи Советского Союза в развитии авиационной техники. В декабре 1975 г. на самолетах Ту-144 началась регулярная эксплуатация по перевозке почты и грузов на трассе Москва–Алма-Ата, а с 1 ноября 1977 г. началась эксплуатация самолета с пассажирами.

Сверхзвуковой ракетоносец

22 августа 1972 г. состоялся первый полет первого сверхзвукового ракетоносца с треугольным крылом Т-4 ОКБ «Су» П. О. Сухого. Ударно-разведывательный бомбардировщик-ракетоносец ОКБ Сухого предназначался для уничтожения авианосных ударных групп противника и ведения стратегической разведки. Максимальная скорость — 3200 км/ч, потолок — 25 км, нагрузка — 2 крылатых ракеты.

Сверхзвуковой стратегический ракетоносец

Первый полет сверхзвукового стратегического ракетоносца НМ-1 ОКБ Павла Владимировича Цыбина состоялся 7 апреля 1959 г. Самолет был рассчитан на полеты со скоростью до 3 тыс. км/ч и на высоту до 30 км.

После успешных пусков межконтинентальных баллистических ракет работы по крылатым носителям ядерного оружия были сокращены.

Сверхтекучесть

Физик, академик, основатель «Магнитной лаборатории П. Л. Капицы» в Кембридже (3 февраля 1933 г.), Института физических проблем Физико-технического института Петр Леонидович КАПИЦА (26.06.1894, Кронштадт — 08.04.1984, Москва) родился в семье генерал-майора инженерного корпуса. Открыл закон линейного , по величине магнитного поля, возрастания электросопротивления металлов  (закон Капицы), явление сверхтекучести  жидкого гелия, впервые получил жидкий гелий  на созданной им установке для ожижения гелия адиабатическим методом. В 1947 г. создал количественную теорию взаимодействия морских волн с ветром. В 1950–1955 гг. разработал СВЧ генераторы планотрон  и ниготрон мощностью до 300 кВт (в непрерывном режиме) и обнаружил, что при высокочастотном разряде в плотных газах образуется стабильный плазменный шнур, открыв новое направление исследований в области осуществления управляемого термоядерного синтеза.

Вместе с Р. Фаулером создал Международную серию монографий по физике и был одним из ее главных редакторов. Лауреат Нобелевской премии по физике, большой золотой медали им. Ломоносова.

Сказано Капицей: «Узкий эгоизм как в жизни отдельного человека, так и в жизни государства никогда не оправдывается»; «Один из главных отечественных недостатков — недооценка своих и переоценка заграничных сил. Излишняя скромность — это еще больший недостаток, чем излишняя самоуверенность. Для того чтобы закрепить победу и поднять наше культурное влияние за рубежом, необходимо осознать наши творческие силы и возможности. Сейчас нам надо усиленным образом поднимать нашу собственную оригинальную технику. Успешно мы можем это сделать только тогда, когда будем верить в возможности и престиж нашего инженера и ученого, когда мы, наконец, поймем, что творческий потенциал нашего народа не меньше, а даже больше других . Что это так, доказывается и тем, что за все эти столетия нас никто не сумел проглотить…» (из письма Сталину).

Свечи зажигания

14 июля 1896 г. в Н. Новгороде на Всероссийской промышленно-художественной выставке был представлен первый русский автомобиль. В 1889 г. Евгений Яковлев, в прошлом лейтенант военного флота, основал в Петербурге небольшой заводик и организовал серийное производство керосиновых и газовых двигателей. Двигатели конструкции Яковлева имели по тем временам немало передовых конструктивных особенностей (электрическое зажигание, съемную головку цилиндра, смазку под давлением).

В 1893 г. на Всемирной выставке в Чикаго они были отмечены премией. На этой выставке был также представлен один из первых автомобилей серийного производства — немецкий «Бенц» модели «Вело». Этот автомобиль привлек внимание Евгения Яковлева, а также Петра Фрезе, инженера, владельца каретных мастерских в Петербурге, и они решили построить подобную машину.

Первый русский автомобиль с двигателем внутреннего сгорания прошел испытания в мае 1896 г., а 14 июля модель была выставлена на Всероссийской промышленно-художественной выставке в Н. Новгороде и совершала там демонстрационные поездки.

Автомобиль был оснащен четырехтактным двигателем внутреннего сгорания с одним горизонтальным цилиндром, который размещался в задней части кузова и развивал мощность 1,5–2 л. с. Для охлаждения цилиндра служила вода, а теплообменниками являлись две латунные емкости, размещенные вдоль бортов в задней части машины. Зажигание смеси было электрическим (батарея сухих элементов и патентованная свеча), в то время как на многих двигателях тех лет применялась калильная трубка. Автомобиль имел двухместный кузов, два тормоза, весил около 300 кг и развивал скорость до 20 км/ч.

Северная точка Евразии

Русский полярный исследователь Семен Иванович ЧЕЛЮСКИН, ученик подштурмана в Великой Северной экспедиции 9 мая 1742 г. на собачьих упряжках достиг самой северной точки Азии (и всей Евразии), которая в его честь была названа мысом Челюскина . Его же именем названы полуостров Челюскин  на Таймыре, остров Челюскин  в устье Таймырской губы Карского моря. Когда первопроходец вернулся в Петербург, его произвели в мичманы.

Капитан 3-го ранга в отставке С. И. Челюскин похоронен на кладбище с. Мишина Поляна Белевского у. — старинном имении своих предков.

Северного полюса со стороны Евразии достижение

Первым достиг Северного полюса со стороны Евразии русский исследователь Арктики Георгий Яковлевич СЕДОВ (23.04.1877 — 20.02.1914) с двумя спутниками, выйдя на собачьих упряжках 2 февраля 1914 г. от застрявшего во льдах трехмачтового парового барка «Св. Фока». Вернуться из похода Седову было не суждено. 20 февраля матросы похоронили Седова на острове Рудольфа — самом северном острове самого северного архипелага. Еще в 1912 г., когда царское правительство отказалось субсидировать экспедицию, по всей стране был объявлен сбор пожертвований, Седов писал: «Русский народ должен принести на это национальное дело небольшие деньги, а я приношу жизнь». Именем Седова назван ледокол, с. Кривая Коса, где родился первопроходец, теперь называется Седово. В поселке открыты музей и памятник Седову. В Ростове на улице Седова стоит Институт водного транспорта его имени.

Северо-восток Азии

24 января 1725 г. из Петербурга вышла Первая Камчатская экспедиция для отыскания северного морского пути до Индии, Китая и Америки под началом В. И. Беринга и его помощника — А. И. Чирикова. Прибыв в 1727 г. по суше в Охотск, в 1728 г. экспедиция дошла до Северного океана, описала часть побережья Северо-востока Азии, изготовила карту северо-востока Азии, долгое время использовавшуюся географами и путешественниками по всему миру.

Сейсмографов теория

Геофизик, академик АН СССР Григорий Александрович ГАМБУРЦЕВ (10.03.1903, С.-Петербург — 28.06.1955, Москва). Фамилию получил в Петербургском приюте для сирот, учрежденном принцессой Гессен-Гомбургской. С 1948 г. — директор Геофизического института АН СССР. Разработал новые конструкции сейсмографов и создал теорию сейсмографов . Фактический основатель геофизических методов исследования Земли  (корреляционный метод преломленных волн) и геофизических методов разведки месторождений  полезных ископаемых (метод глубинного сейсмического зондирования — ГСЗ), прежде всего нефти, газа и урана. Открыл значительные месторождения железных руд, нефтяные месторождения в Башкирии  («второе Баку»), обеспечившие во время войны нашу армию углеводородным топливом. Именем академика назван Институт физики Земли РАН, открытый им вал Гамбурцева  — геологическое образование в Тимано-Печорском нефтяном бассейне, горы Гамбурцева  в Антарктиде, обнаруженные с использованием разработанных им методов, и научно-исследовательское судно.

Сейсмология

Борис Борисович ГОЛИЦЫН (18.02.1862, С.-Петербург — 04.05.1916, там же) — русский геофизик, один из основателей сейсмологии, академик, президент международной сейсмической ассоциации. Поныне используется изобретенный им сейсмограф электродинамический . Его именем назван «слой Голицына»  — нижняя часть верхней мантии Земли, где зарождаются землетрясения, научно-исследовательское судно «Академик Голицын».

Сельскохозяйственная механика

Русский ученый, основоположник сельскохозяйственной механики  Василий Прохорович ГОРЯЧКИН (17.01.1868, с. Выкса Нижегородской губ. — 21.09.1935, Москва). С 1896 г. преподавал новый курс «Сельскохозяйственные машины и двигатели» в Московском сельскохозяйственном институте (МСХА им. К. А. Тимирязева), с 1929 г. — директор созданного им Всесоюзного института сельскохозяйственной механики. Перед зданием Московского государственного агроинженерного университета им. В. П. Горячкина установлен его бюст.

Серебристые облака

Существование серебристых облаков открыли практически одновременно 8–12 июня 1885 г. Т. Бэкхаус (Германия) и астроном Московского университета Витольд Карлович ЦЕРАСКИЙ (27.04.1849, Слуцк Минской губ. — 29.05.1925, с. Троицкое Подольского у. Московской губ.), член АН, основоположник астрофотометрии  (применения фотографии в астрономии).

Цераский с высокой точностью определял блеск звезд, первым определил звездную величину Солнца . Определил температуру Солнца  — более 60000°. Описание Цераским серебристых облаков оставляет впечатление художественной прозы: «Облака эти ярко блистали на ночном небе чистыми, белыми, серебристыми лучами, с легким голубоватым отливом, принимая в непосредственной близости от горизонта желтый, золотистый оттенок. Были случаи, что от них делалось светло, стены зданий весьма заметно озарялись, и неясно видимые предметы резко выступали. Иногда облака образовывали слои или пласты, иногда своим видом похожи были на ряды волн, или напоминали песчаную отмель, покрытую рябью или волнистыми неровностями… Это настолько блестящее явление, что совершенно невозможно составить себе о нем представление без рисунков и подробного описания. Некоторые длинные, ослепительно серебристые полосы — перекрещивающиеся или параллельные горизонту, изменяются довольно медленно и столь резки, что их можно удерживать в поле зрения телескопа».

Серийный автомобиль с бескрылым кузовом

На Горьковском автозаводе 28 июня 1946 г. собрали первую партию 5-местных легковых автомобилей ГАЗ-М-20 «Победа» с 50-сильным двигателем. Эта машина стала первым советским автомобилем с несущим кузовом и первым в мире серийным автомобилем с кузовом без крыльев . Максимальная скорость — 105 км/ч. Художник-конструктор — В. Самойлов. «Победа» экспортировалась в основном в Финляндию и в Бельгию. Журнал «Cars» (США) за 1953 г. в обзорной статье о советских автомобилях называет «Победу» «прекрасно выглядящей машиной современного дизайна», «копирующей некоторые лучшие черты американских автомобилей», «весьма хорошо сделанной», «приближающейся к обычному американскому автомобилю легкого класса типа „Форд“ или „Шевроле“». С 1951 г. «Победа» по лицензии выпускалась в Польше на заводе FSO (Fabryka Samochodów Osobowych) под маркой „Warszawa” («Варшава»).

Серийный сверхзвуковой истребитель

17 февраля 1954 г. Совет Министров постановлением № 286-133 распорядился начать серийное производство самолета МиГ-19 на двух заводах в Горьком и Новосибирске. МиГ-19 стал первым в мире серийно выпускаемым сверхзвуковым истребителем. Недостижимы для других самолетов того времени были его показатели скорости благодаря Глебу Евгеньевичу ЛОЗИНО-ЛОЗИНСКОМУ, разработавшему первую в мире форсажную камеру для турбореактивных двигателей, которыми оснащался МиГ-19. Максимальная скорость: 1452 км/ч, потолок — 15 км. Состоял на вооружении в 23 странах. Лицензионный вариант производился в Китае под названием Shenyang J-6.

Сетчатая гиперболоидная башня

11 января 1896 г. Владимир Григорьевич ШУХОВ предъявил заявку на изобретенный им способ устройства сетчатых гиперболоидных башен  (получен патент Российской Империи № 1896 от 12 марта 1899 г.). Первая в мире гиперболоидная башня была построена Шуховым на Всероссийской художественно-промышленной выставке в Н. Новгороде в 1896 г. Принцип устройства гиперболоидных башен В. Г. Шухов использовал в сотнях сооружений: водонапорных башнях, опорах линий электропередач, мачтах военных кораблей. Со 2-й пол. XX в. пошла волна повторений Шуховской башни: в 1963 г. в порту г. Кобе в Японии построена 108-метровая гиперболоидная Шуховская башня (Kobe Port Tower); в 1968 г. в Чехии по проекту архитектора Карела Хубачека была построена гиперболоидная башня высотой 100 м; в 2003 г. — гиперболоидная башня Шухова в Цюрихе, авторы башни — архитекторы Даниэль Рот и Александр Ком (Saniel Roth, Alexander Kohm); в 2005–2009 гг. — 610-метровая гиперболоидная сетчатая Шуховская башня в Гуанчжоу в Китае компанией ARUP. Мировое значение Шуховской башни подтверждают экспозиции ее макетов на престижных архитектурных выставках Европы последних лет. На выставке «Инженерное искусство» в центре Помпиду в Париже изображение Шуховской башни использовалось как логотип. На выставке «Лучшие конструкции и сооружения в архитектуре XX века» в Мюнхене в 2003 г. был установлен позолоченный шестиметровый макет Шуховской башни. Конструкции Шухова подробно описываются во многих европейских книгах по истории архитектуры.

Синтез бутадиена

По утверждению американских историков науки, Россия дала миру трех великих химиков: в XVIII в. — Ломоносова, в XIX в. — Менделеева, в XX в. — Ипатьева. Владимир Николаевич ИПАТЬЕВ (09.11.1867, Москва — 29.10.1952, Чикаго) — академик, автор 250 патентов. Окончил Михайловскую артиллерийскую академию в Петербурге, с 1900 г. — профессор этой академии. При вступлении России, не имевшей серьезной химической промышленности, в Первую мировую войну для организации производства взрывчатых веществ создали комиссию во главе с Ипатьевым. За 6 мес. комиссия добилась роста производства взрывчатки с 50 до 3300 т в месяц (в 66 раз!). Председатель Химического комитета РСФСР и СССР создал Институт высоких давлений в Ленинграде, инициировал создание Радиевого института. Открытия Ипатьева по синтезу изопрена, бутадиена, синтезу полимербензинов, введению в практику оксида алюминия, ставшего одним из самых распространенных в химии катализаторов, многофункциональных катализаторов при крекинге, риформинге и других процессах переработки нефти — заложили основы химии XX века, без которых немыслима современная жизнь. С 1928 г. работал в Германии, с 1930 г. — в США. Причина отъезда: сфабрикованный ГПУ процесс «Промпартии» против технической интеллигенции. В США, а не в Советском Союзе Ипатьев разработал промышленную технологию получения изопропилбензола, так называемой «антидетонационной присадки» к авиабензину, позволяющей резко повысить октановое число и таким образом — мощность мотора. В итоге американские и английские самолеты во Второй мировой войне летали на самых мощных в то время двигателях. А для СССР отсутствие собственного производства изопропилбензола обернулось неисчислимыми потерями летчиков в воздухе, солдат и мирных жителей на земле, зависимостью от поставок американского авиабензина по ленд-лизу. Такова цена одной только умной головы.

По мнению нобелевского лауреата Р. Вильштеттера, «никогда за всю историю химии в ней не появлялся более великий человек, чем Ипатьев».

Имя ученого носят премия Российской академии наук за успехи в общей и технической химии, Нортуэстернский университет в США.

Синхронизатор для истребителя

24 января 1915 г. на вооружение русской армией принят первый в мире истребитель С-16 И. И. Сикорского с синхронизатором Г. Лаврова (приспособлением для автоматической стрельбы через винт пропеллера без повреждения винта). Самолет предназначался для сопровождения самых больших и мощных в мире воздушных кораблей «Илья Муромец» и охраны их аэродромов от самолетов противника. Машины изготовляло Воздухоплавательное отделение АО «Русско-Балтийский вагонный завод», где делали «Илью Муромца».

Позднее капитан 2-го ранга Виктор Владимирович Дыбовский (Противолодочная авиация)  , откомандированный в 1916 г. с фронта в Русский закупочный комитет, находившийся в Англии, запатентовал там синхронизатор своей конструкции. Новинка была усовершенствована мичманом британского флота Скарфом и получила название «синхронизатор Скарфа–Дыбовского».

Систем дифференциальных уравнений с частными производными теория

Иван Георгиевич ПЕТРОВСКИЙ (05.01.1901, г. Севск Орловской губ. — 15.01.1973, Москва) родился в семье купца. Математик, автор многих фундаментальных результатов в разделах математики и математической физики, автор ряда базовых учебных курсов, переведенных на многие иностранные языки. Основал теорию систем дифференциальных уравнений с частными производными. Возглавляя Московский государственный университет 22 года, вывел МГУ на положение ведущего университета мира, организовал более 70 кафедр и 200 лабораторий по новейшим направлениям, привлек к работе в университете крупнейших ученых страны (в т. ч. более 100 членов АН СССР). Организовал университетский Институт механики, первые в стране кафедры математической логики и вычислительной математики. Из его афоризмов: «Администратор не может принести пользы! Задача хорошего администратора — минимизировать вред, который он наносит». В честь него названа одна из улиц Москвы.

Систем и организаций теория

Философ, экономист, социолог, врач Александр Александрович БОГДАНОВ (Малиновский) (10.08.1873, г. Соколка Гродненской губ. — 07.04.1928, Москва) родился в семье учителя. Он основал современную теорию систем и организаций , сформулировал принцип относительности в теории организаций, ввел понятие циклов развития и деградации. В своей основной работе «Всеобщая организационная наука. Тектология» (Т. 1 — 1912) предвосхитил многие идеи кибернетики, теории систем, синергетики и других наук. Его процессуальный взгляд на организацию сложных систем, предполагающий рост функционального использования их свойств и структур, можно считать краеугольным камнем реинжиниринга .

Система разделения труда

Преподаватель, изобретатель Дмитрий Константинович СОВЕТКИН (17.04.1838, Москва — 21.11.1912, Владимир) родился в семье крепостных. Автор русской системы профессионального обучения или системы МТУ (13 июня 1868 г.). Смысл русской системы Советкина — разделение процесса труда на операции и приемы, обучение не изготовлению готовых изделий, а выполнению определенных операций и приемов, из которых складывается работа. В результате ускоряется процесс обучения мастерству и появляется возможность одному мастеру руководить большим количеством учеников. Его система прошла через многие всероссийские и международные технические выставки в Москве, Петербурге, Вене, Филадельфии, Париже, Лондоне, Антверпене, Чикаго и других промышленных центрах. Система широко распространилась в Западной Европе и Америке. Президент Массачусетского технологического института Дж. Рункль, получив сделанную специально по просьбе американцев коллекцию моделей для обучения инженеров по русскому методу, в восторге писал ректору ИМТУ: «За Россией признан полный успех в решении столь важной задачи технического образования… В Америке после этого никакая иная система не будет употребляться». Однако сейчас в Америке автором системы разделения труда считают Тейлора, а его предшественника Советкина вспоминать перестали. Бывшее земское техническое училище, спроектированное, организованное и оснащенное Д. К. Советкиным, возглавлялось им в течение 27 лет. Сегодня оно носит имя комиссара крейсера «Аврора» Белышева — парадокс! На здании Владимирского авиамеханического колледжа установлена мемориальная доска, на которой высечено: «В этом здании в 1885–1912 гг. работал Советкин Дмитрий Константинович, первый директор Мальцовского училища, основоположник русской системы профессионального образования».

Система спутникового телевидения

26 октября 1976 г. начала действовать первая в мире система непосредственного телевизионного вещания через спутник связи «Экран», предназначенная для охвата программами Центрального телевидения малых населенных пунктов в Сибири с ретранслятором производства НИИ Радио. Это первый в мире серийный спутник непосредственного (прямого) телевизионного вещания. Разработчик — НПО ПМ. Искусственные спутники Земли серии «Экран» ретранслировали цветные и черно-белые программы центрального телевидения на приемные устройства коллективного пользования в населенных пунктах Сибири и Крайнего Севера. Мощность ретранслятора позволяла абонентам принимать телевизионный сигнал непосредственно на антенну индивидуального телевизионного приемника.

Система Станиславского

Константин Сергеевич СТАНИСЛАВСКИЙ (Алексеев) (05.01.1863, Москва — 07.08.1938, там же) родился в семье богатого купца-мецената. Русский актер, режиссер, признанный в мире основоположник техники органичного перевоплощения, названной системой Станиславского. Вместе с В. И. Немировичем-Данченко основал Московский художественный театр (МХТ, МХАТ). Легко отнесясь к национализации своей фабрики и потере капиталов, тяжело переживал, что часть труппы его театра эмигрировала. Знаменитую свою книгу «Моя жизнь в искусстве» завершил словами о смысле жизни художника: «Единственный царь и владыка сцены — талантливый артист»; «Театр есть искусство отражать жизнь».

Системы автономного управления ракетами

Николай Алексеевич ПИЛЮГИН (05.05.1908, Красное Село под Петербургом — 02.08.1982, Москва) — русский ученый, академик, дважды Герой Социалистического Труда. Основоположник отечественных систем автономного управления ракетно-космическими комплексами, космическими кораблями и межпланетными аппаратами. Главный конструктор автономных систем управления, член Совета главных конструкторов ракетной и ракетно-космической техники. Разрабатывал системы управления ракет Р-1, Р-7 (выводившей на орбиту Спутник-1 и первого космонавта), руководил разработкой систем управления многих межпланетных станций, ракет «Протон», космического челнока «Буран». Его именем названа улица в Москве, Научно-производственный центр автоматики и приборостроения, научно-исследовательское судно. В мае 2008 г. у здания НПЦ автоматики и приборостроения в Москве установлен памятник Пилюгину.

Скафандр

Ученый, писатель, почетный член Академии наук СССР Николай Александрович МОРОЗОВ (25.06.1854, пос. Борок Ярославской губ. — 30.07.1946, там же). В монографии «Периодические системы строения вещества» утверждал о сложном строении атомов и взаимопревращаемости всех химических элементов, что, по словам академика И. В. Курчатова, «современная физика полностью подтвердила». Морозов с 1918 г. до конца своей жизни был директором Естественно-научного института им. Лесгафта. Руководил Русским обществом любителей мироведения , располагавшимся в здании института. Членами общества начиналась разработка ряда проблем, связанных с освоением космоса. Морозов предложил высотный герметический авиационный костюм — прообраз современного космического скафандра. Он же изобрел спасательный экваториальный пояс , позволяющий автоматически превратить верхнюю часть воздушного шара в парашют и обеспечить плавный спуск гондолы или кабины на землю. В 1939 г. Морозовым создан научный центр в пос. Борок, где сейчас работают Институт биологии внутренних вод и Геофизическая обсерватория «Борок» РАН.

Славистика

Юрий Иванович ВЕНЕЛИН (Гуца) (22.04.1802, с. Большая Тибава в Подкарпатье (ныне — с. Тибава Свалявского р-на Закарпатской обл. Украины — 26.03.1839, Москва) — один из основателей славянофильства  , первооткрыватель для современной мировой науки родственных связей между славянами и венетами, основавшими Венецию, этрусками, основавшими Болонью и Рим, вандалами, основавшими Андалузию, русин. Происходя из Червонной (подкарпатской или угорской) Руси, он был угро-русским и словенским просветителем, вождем болгарского национального возрождения. Его книга «Древние и нынешние болгары в политическом, народописном, историческом и религиозном отношении к России» инициировала зарождение национально-освободительного движения болгар против владычества турок. Его «Конспект преподавания истории и славянского языка и литературы» стал первой программой преподавания славистики.

В русофобское время, когда был уничтожен Институт славяноведения, его имя и труды были преданы забвению. До 2004 г. прождала издания его книга «Древние и нынешние словене». Именно в этой книге Венелин впервые пророчески ввел в литературу само название будущего (тогда еще не существовавшего) государства Словении. Венелин доказывал, что история славян начинается задолго до истории древних Рима и Афин и во многом оказала на них влияние. Великий славист, языковед и историк, безвестный в России, поскольку большинство академических историков были норманисты, Венелин не дожил до 37 лет. Он завещал нам: «Ничто так цельно и так долговременно не сохраняется, как слово в устах человека, слово — как клад, завещанный нам отдаленнейшими предками». В некрологе Венелина Иван Молнар говорит, что он оставил после себя бесценное наследство, «которым может истинно гордиться русская народная история как в наше, так и во всякое время, пока будет существовать русский народ и русское народное чувство».

Славянофильство

Национальная идеология русского народа, сыгравшая большую роль в формировании русского мировоззрения, обозначившего мировое значение русского народа. Славянофилы обоснованно и твердо объявили об особом пути России, утвердились в мысли о спасительной роли Православия как единственно истинного христианского вероучения, отметили неповторимые формы общественного развития русского народа в виде общины и артели. «Все, что препятствует правильному и полному развитию Православия, — писал И. В. Киреевский, — все то препятствует развитию и благоденствию народа русского; все, что дает ложное и не чисто православное направление народному духу и образованности, все то искажает душу России и убивает ее здоровье нравственное, гражданское и политическое. Поэтому, чем более будут проникаться духом Православия государственность России и ее правительство, тем здоровее будет развитие народное, тем благополучнее народ и тем крепче его правительство и, вместе, тем оно будет благоустроеннее, ибо благоустройство правительственное возможно только в духе народных убеждений».

Славянофильство зародилось в кон. 1830-х гг., а в 1840–1850-х гг. собрало самые мощные национальные силы. Круг единомышленников-славянофилов был широк и объединял выдающихся русских писателей и ученых. Наиболее крупными выразителями славянофильских идей были И. В. Киреевский, А. С. Хомяков, К. С. Аксаков, Ю. Ф. Самарин. Вокруг них группировались И. С. Аксаков, И. Д. Беляев, Д. А. Валуев, А. Ф. Гильфердинг, Н. Д. Иванишев, П. В. Киреевский, А. И. Кошелев, В. И. Ламанский, В. Н. Лешков, Н. А. Попов, В. А. Черкасский, Ф. В. Чижов. Славянофилов поддерживали и являлись выразителями их идей русские писатели С. Т. Аксаков, В. И. Даль, А. А. Григорьев, А. Н. Островский, Ф. И. Тютчев, Н. М. Языков и др. Мировоззренческие учения славянофилов оплодотворяли научную деятельность русских ученых Ф. И. Буслаева, О. М. Бодянского, Г. П. Галагана, В. И. Григоровича, И. И. Срезневского, М. А. Максимовича, Н. А. Ригельмана.

Слойки Забабахина

Академик, генерал-лейтенант, научный руководитель Российского федерального ядерного центра в г. Снежинске Челябинской обл. — Всесоюзного НИИ технической физики Евгений Иванович ЗАБАБАХИН (03.01.1917, Москва — 27.12.1984, Челябинск-70, ныне Снежинск) родился в семье служащих. Автор фундаментальных научных трудов и открытий в области кумулятивных систем (кумуляция в сложных системах — «слойки Забабахина», влияние теплопроводности на фокусировку ударной волны , влияние вязкости и вращения на схождение оболочек), в области физики высоких давлений (уравнения состояния конденсированных сред  и взрывчатых веществ, полиморфные фазовые превращения ), в области физики взрыва (воздействие на различные среды, организация необходимого режима воздействия). Лауреат Ленинской и трех Сталинских премий. Его имя было присвоено РФЯЦ-ВНИИТФ и улице в Снежинске.

Соборность

Духовный приоритет русского народа, одно из основополагающих понятий русской цивилизации. Наиболее полно это понятие раскрыто в трудах Алексея Степановича и Дмитрия Алексеевича ХОМЯКОВЫХ. «В вопросах веры, — писал А. С. Хомяков, — нет различия между ученым и невеждой, церковником и мирянином, мужчиной и женщиной, государем и подданным, рабовладельцем и рабом, где, когда это нужно, по усмотрению Божию, отрок получает дар видения, младенцу дается слово премудрости, ересь ученого епископа опровергается безграмотным пастухом, дабы все было едино в свободном единстве живой веры, которое есть проявление Духа Божия. Таков догмат, лежащий в глубине идеи собора». Соборность — это цельность, внутренняя полнота, множество, собранное силой любви в свободное и органическое единство. Развивая идеи И. В. Киреевского о духовной цельности, Хомяков пишет об особом соборном состоянии человека, истинной вере, когда все многообразие духовных и душевных сил человека объединено в живую и стройную цельность его соборной волей, нравственным самосознанием, устремленностью к творчеству.

Д. А. Хомяков дает определение соборности, которое продолжает идейную линию русской мысли еще с дохристианских времен. Соборность, по его учению, — целостное сочетание свободы и единства многих людей на основе их общей любви к одним и тем же абсолютным ценностям. Такое понимание соборности соответствовало древнерусскому понятию «лад» и было неразрывно связано с общинной жизнью русского народа.

Основной принцип Православной Церкви, писал Д. А. Хомяков, состоит не в повиновении внешней власти, а в соборности. «Соборность — это свободное единство основ Церкви в деле совместного понимания ими правды и совместного отыскания ими пути к спасению, единство, основанное на единодушной любви к Христу и божественной праведности». Главное усилие постижения истин веры состоит в соединении с Церковью на основе любви, т. к. полная истина принадлежит всей Церкви в целом. В Православии человек находит «самого себя, но себя не в бессилии своего духовного одиночества, а в силе своего духовного, искреннего единения со своими братьями, со своим Спасителем. Он находит себя в своем совершенстве, или, точнее, находит то, что есть совершенного в нем самом, — Божественное вдохновение, постоянно испаряющееся в грубой нечистоте каждого отдельного личного существования. Это очищение совершается непобедимой силой взаимной любви христиан в Иисусе Христе, ибо эта любовь есть Дух Божий». Хомяков совершенно справедливо отождествляет принципы соборности и общинности как «сочетание единства и свободы, опирающееся на любовь к Богу и Его истине и на взаимную любовь ко всем, кто любит Бога».

Соборность есть, на самом деле, единство и, на самом деле, во множестве, поэтому и в Церковь входят все, и в то же время она едина; каждый, кто воистину в Церкви, имеет в себе всех, сам есть вся Церковь, но и обладаем всеми (С. Н. Булгаков). Соборность противоположна и католической авторитарности, и протестантскому индивидуализму, она означает коммунитарность (общинность), не знающую внешнего над собой авторитета, но не знающую и индивидуалистического уединения и замкнутости (Н. А. Бердяев).

Соборность — одно из главных духовных условий национального единства и создания мощной державы, какой была Россия.

Запад не сумел создать такого мощного государства, как Россия, объединенного на духовных началах, потому что он не достиг соборности, а для объединения народов вынужден был использовать прежде всего насилие. Католические страны, справедливо считал Хомяков, обладали единством без свободы, а протестантские — свободой без единства.

Россия сумела создать органичное сочетание единства и свободы, в условиях которого почти каждый русский был строителем великой державы не за страх, а за совесть. Абсолютные ценности, на любви к которым объединялись русские люди, — Бог, Царь, Родина, или, как это звучало в массе, за Бога, Царя и Отечество.

Таким образом, известная формула «Православие, Самодержавие, Народность» возникла не на пустом месте, а отражала соборные ценности русского народа, возникшие еще в глубокой древности.

Современная теория вероятностей

Выдающийся русский математик, основоположник современной теории вероятностей (исторически сложившейся как «русский раздел математики») Андрей Николаевич КОЛМОГОРОВ (12.04.1903, г. Тамбов — 20.10.1987, Москва) родился в семье агронома, работал в области топологии, логики, теории турбулентности, теории сложности алгоритмов. Получил признанные классическими методы и теоремы в общей теории операций над множествами, теории интеграла, теории информации, гидродинамике, небесной механике и т. д. Влияние его работ на общий ход развития математики чрезвычайно велико. Особое значение для приложения математических методов к естествознанию и практическим наукам имеет закон больших чисел, сформулированный Колмогоровым в 1926 г. в строгом виде с необходимыми и достаточными условиями (разыскать которые безуспешно старались крупнейшие математики многих стран на протяжении десятилетий). Инициировал создание физико-математической школы-интерната при МГУ им. М. В. Ломоносова. В 1962 г. награжден международной премией Бальцана, которую называют «Нобелевской премией математиков» (в завещании Нобеля работы математиков оговорены не были). Гносеологический принцип Колмогорова: «В качестве универсального принципа, руководящего работой мышления и творчества, остается лишь тенденция к поискам возможно более простых решений».

Современный русский литературный язык

Создатель современного русского литературного языка, гений русской поэзии, автор «энциклопедии русской жизни» — романа в стихах «Евгений Онегин» — Александр Сергеевич ПУШКИН (26.05.1799, Москва — 29.01.1837, С.-Петербург). Обессмертив себя стихотворными произведениями, третьей жизнью живут оперы, созданные по его произведениям: «Руслан и Людмила», «Евгений Онегин», «Пиковая дама», «Борис Годунов»), романсы: «Я Вас любил», «Не пой, красавица, при мне», «Старый муж»; народные песни: «Черная шаль», «Узник». Причем романсы на его стихи писали не только русские композиторы. Так, англичанин Бриттен освоил русский язык в рамках шести стихотворений Пушкина и написал к ним музыку.

Ф. М. Достоевский в знаменитой речи на открытии пушкинского памятника в Москве указал, что наиболее ярким показателем мудрости нашего поэта было его необыкновенное свойство вмещать в себе и художественно воплощать в своих произведениях дух каждого народа, неповторимые как общечеловеческие, так и индивидуальные черты быта каждой нации. В Псковской обл. действует Пушкинский заповедник. В разных городах мира установлены памятники Пушкину. Наибольшее количество скульптур находится в городах России и странах бывшего СССР (Москва и С.-Петербург — по нескольку памятников в каждом, Минск, Киев, Львов, Одесса, Нарва, Ростов-на-Дону, Петрозаводск, Ереван, Гюмри, Кишинев, Ашхабад, Тбилиси, Тирасполь, Бендеры, Баку, Харьков и др.), однако не один десяток памятников поэту стоит и в городах других стран: в Риме, Мадриде, Вашингтоне, Квебеке, Вене, Париже, Мехико, Белграде, немецком Хеммере, финском Куопио, венгерском Дендеше, Панаме, македонском Скопье и др.

Соглашение о сотрудничестве в использовании космоса

Межправительственное соглашение о сотрудничестве в использовании космоса с участием Болгарии, Германской Демократической Республики, Венгрии, Кубы, Монголии, Польши, Румынии, Чехословакии и СССР было подписано 13 июля 1976 г. По этому соглашению одного за другим «братьев» из демократических республик нашими ракетами и с нашими инструкторами стали запускать в космос.

Состав углей

Точный состав русских углей установил химик-органик, член-корреспондент Петербургской АН, русский «дедушка химии» Александр Абрамович ВОСКРЕСЕНСКИЙ (25.11.1809, г. Торжок Тверской губ. — 21.01.1880, с. Можайцево Тверской губ.) родился в семье дьякона. Открыл теобромин в какао. Был ректором Петербургского университета, читал химию в пяти других петербургских высших школах. Попечитель Харьковского учебного округа (1867). Его любимая поговорка: «Не боги горшки обжигают и кирпичи делают». Д. И. Менделеев говорил: «Воскресенскому и Зинину принадлежит честь быть зачинателями самостоятельного русского направления в химии». Химики русского физико-химического общества, скинувшись, собрали капитал и установили премию общего имени Зинина и Воскресенского, выдававшуюся из процентов с капитала за лучшие работы по химии в России.

Социологическая повесть: литературный жанр

Выдающийся русский логик, социолог и писатель, профессор и заведующий кафедрой логики МГУ, один из основателей Московского логического кружка Александр Александрович ЗИНОВЬЕВ (29.10.1922, дер. Пахтино Костромской губ. — 10.05.2006, Москва) создал литературный жанр «социологическая повесть». В таком жанре была написана и его знаменитая книга «Зияющие высоты». Множество его книг и статей получили мировую известность; все его крупные произведения переведены на многие языки. Член трех иностранных академий. Почетный гражданин Костромы и нескольких городов мира. В книге «Логический интеллект» описал принцип сегодняшнего мироустройства: «Сегодняшний мир управляется физически сильным, но интеллектуально убогим насильником». Каков же выход? По мнению Зиновьева, выход один: мы должны «переумнить» Запад, т. е. развить более высокий интеллектуальный потенциал. Согласно другому его принципу, самые глубокие тайны основных социальных явлений не спрятаны где-то глубоко, а открыты для всеобщего обозрения в очевидных фактах повседневной жизни. Недоступен способ понимания этих явлений. Еще в 1986 г., предсказав начало эпохи великого исторического предательства, когда прибывший с визитом в Лондон Горбачев не пошел на могилу Маркса, доказал, что американцы, поддерживаемые объединенными силами Запада, и верхушка коммунистов во главе с Горбачевым договорились о сдаче страны без единого выстрела.

Похоронен на Новодевичьем кладбище.

Социология

Русский ученый, основатель социологии Питирим Александрович СОРОКИН (23.01.1889, с. Турья Вологодской губ. — 10.02.1968, Винчестер, Массачусетс, США) работал в правительстве Керенского. История по Сорокину — это взаимодействие и эволюция культур. Родоначальник теорий социальной динамики  (мобильности) и социальной стратификации . В 2010 г. в Сыктывкаре создан Центр «Наследие» им. Питирима Сорокина. Основная задача Центра — изучение и популяризация в республике наследия П. А. Сорокина и других выдающихся деятелей науки и культуры Коми.

В 2011 г. в США образован Фонд Питирима Сорокина, среди его задач — такие как сохранение и защита международных авторских прав наследия Питирима Сорокина; популяризация научного творчества Питирима Сорокина; содействие в научных исследованиях в различных областях социологии; помощь в проведении благотворительных, научных и образовательных мероприятий в рамках популяризации творчества Питирима Сорокина.

Спортсменка самая титулованная

На чемпионате мира по спортивной гимнастике в Праге в июле 1962 г. абсолютным чемпионом среди мужчин стал Юрий Титов, среди женщин — Лариса ЛАТЫНИНА — самая титулованная спортсменка мира. Двукратная чемпионка мира в многоборье, рекордсменка по количеству олимпийских медалей: имеет наибольшую коллекцию олимпийских медалей за всю историю спорта среди женщин — 9 золотых, 5 серебряных и 4 бронзовых медали. В 2007 г. в г. Обнинске Калужской обл. открыта гимнастическая школа им. Ларисы Латыниной, в которой занимаются более тысячи юных спортсменов.

Способ воздушной дозаправки «крыло-крыло»

16 июня 1949 г. первую дозаправку в воздухе по схеме Шелеста–Васятина на двух бомбардировщиках Ту-2 выполнили Игорь Шелест и Амет-Хан Султан. Летчики-испытатели Игорь Шелест и Виктор Васятин разработали и предложили построить комплекс воздушной дозаправки самолетов, отличный от принятого. По их схеме, для исключения неблагоприятного воздействия спутной струи от одного самолета на другой самолеты должны были лететь не один под другим, а параллельно друг другу. Для ускорения процесса топливо подавалось под давлением, а не самотеком. В 1951 г. схема была принята на вооружение.

Способ исследования стратосферы стратосферными зондами

Способ исследования динамики стратосферы при помощи стратосферных зондов с дымовыми шашками впервые в мире разработали и внедрили сотрудники «Стратосферного комитета», который работал в одном из крупнейших в мире Московском планетарии, открытом 5 ноября 1929 г. В Звездном зале Московского планетария позже первые космонавты учились астронавигации.

Спутник Луны

Запущенная 31 марта 1966 г. с космодрома Байконур ракетой-носителем «Молния-М» автоматическая межпланетная станция «Луна-10» 3 апреля впервые в мире вышла на орбиту вокруг Луны, став первым в мире спутником Луны. Масса спутника составляла около 250 кг.

Спутник связи

Первый спутник связи «Молния-1» запущен 23 апреля 1965 г. С его помощью состоялась первая в мире сверхдальняя передача телевидения  между Москвой и Владивостоком. Спутник разрабатывался в конструкторском бюро Королёва ОКБ-1 с 1961 г. в кооперации с большим количеством специалистов других конструкторских бюро и институтов. Генеральным конструктором спутника был профессор М. Р. Капланов.

«Спутник» слово

Слово «спутник», ставшее впоследствии международным, в значении спутника Земли впервые употребил Федор Достоевский в письме про роман «Братья Карамазовы» 1 августа 1880 г.: «Что станет в пространстве с топором?.. Если куда попадет подальше, то примется, я думаю, летать вокруг Земли, сам не зная зачем, в виде спутника».

Сравнительная эмбриология

Русский биолог, профессор зоологии в университетах Казанском, Киевском и Новороссийском, академик Александр Онуфриевич КОВАЛЕВСКИЙ (07.11.1840, имение Ворково Динабургского у. Витебской губ. — 09.11.1901, С.-Петербург) обеспечил России, по крайней мере, два мировых приоритета, основав новые отрасли науки — сравнительную эмбриологию и эволюционную гистологию. Изучив развитие зародышей мешковидных морских животных, Ковалевский установил их родство с позвоночными. Исследуя различные группы животных на всех этапах их развития, доказал неразрывную связь между беспозвоночными и позвоночными животными. Был одним из организаторов Севастопольской биологической станции. Период деятельности А. О. Ковалевского иногда называют русским этапом развития эмбриологии, или даже этапом Ковалевского.

Член многих иностранных академий. Благодаря его трудам эмбриологию (как и почвоведение) за рубежом называют русской наукой.

Сравнительное славянское языкознание

Филолог-славист, академик, основоположник сравнительного славянского языкознания, автор грамматики русского языка Александр Христофорович ВОСТОКОВ (16.03.1781, г. Аренсбург на о. Сааремаа в Лифляндской губ. — 08.02.1864, С.-Петербург) первым издал печатный вариант «Остромирова Евангелия» 1057–1058 гг., долгое время считавшегося самой древней славянской книгой. Описал древние русские летописи, создал словарь церковнославянского языка. Исследователь русского тонического стихосложения, памятников древнеславянской письменности, грамматики славянских языков, в т. ч. русского. Востоков показал отсутствие деепричастий в церковнославянском языке, открыл достигательное наклонение в древнерусском, носовые гласные (юсы) в старославянском языке.

Сталинский план преобразования природы

Не имеющая аналогов в мировой практике пятнадцатилетняя программа научного регулирования природы, разработанная на основе трудов выдающихся русских агрономов. План принят в 1948 г. по инициативе Иосифа Виссарионовича СТАЛИНА (09.12.1879, Гори Тифлисской губ. — 05.03.1953, Кунцевский р-н Московской обл.). Согласно плану преобразования природы началось грандиозное наступление на засуху путем посадки лесозащитных насаждений, внедрения травопольных севооборотов, строительства прудов и водоемов. Сила этого плана была в единой воле, комплексности и масштабности. В течение 15 лет намечалось заложить леса на площади, превышающей 4 млн. га. Впервые в истории создавались крупные государственные полезащитные полосы, общая протяженность которых превышала 5300 км. Направление этих полос было выбрано с таким расчетом, чтобы они не только сохраняли воду, но и служили заслонами против губительных для урожая жарких юго-восточных ветров — так называемых суховеев, очень частых в таких районах России, как Поволжье, Северный Кавказ, Кубань, Дон. В составе полезащитных лесных полос главное место отводилось долговечным породам, в частности дубу. Система государственных лесных полос дополнялась большими лесонасаждениями на полях колхозов и совхозов. Планомерно внедрялась система агрономических мероприятий, основанная на учении виднейших русских агрономов — В. В. Докучаева, П. А. Костычева, В. Р. Вильямса — и получившая название травопольной системы земледелия. В эту систему мероприятий входили: посадка защитных лесных полос на водоразделах, по границам полей севооборотов, по склонам балок и оврагов, по берегам рек и озер, вокруг прудов и водоемов, а также облесение и закрепление песков; правильная система обработки почвы, ухода за посевами и прежде всего широкое применение черных паров, зяби и лущения стерни; правильная система применения органических и минеральных удобрений; посев отборных семян высокоурожайных сортов, приспособленных к местным условиям; развитие орошения на базе использования вод местного стока путем строительства прудов и водоемов.

Эффект воздействия только посадки лесных полос на урожайность охраняемых ими полей достигал следующих размеров: по зерновым культурам урожайность увеличивалась на 25–30%, по овощным — на 50–75% и по травам — на 100–200%. Большую практическую отдачу имели и другие составляющие плана преобразования природы.

Однако после смерти Сталина выполнение плана было свернуто. Тем не менее, даже того, что удалось осуществить, хватило нашей стране вплоть до 1970-х гг., были замедлены процессы эрозии почвы, приостановлено выведение ее из полезного хозяйственного оборота.

Стальные бронебойные артиллерийские снаряды

4 марта 1870 г. на нижегородском Сормовском заводе была пущена первая в России мартеновская печь, построенная выдающимся русским инженером-металлургом и изобретателем Александром Александровичем ИЗНОСКОВЫМ (1845, Вятская губ. — 12.02.1911, С.-Петербург) и прославившая металл этой марки как лучший в стране. Мартеновский способ производства литой стали в варианте Износкова был внедрен на Воткинском, Пермском и других заводах. Н. И. Путилов, заводчик из С.-Петербурга, в 1871 г. пригласил «лучшего» зарубежного инженера из Швеции для строительства печи. Построенная шведом печь оказалась непригодной, и ее пришлось срыть. Узнав о хорошей работе сормовской сталеплавильной печи, Путилов пригласил к себе на завод Износкова — горного инженера, предпринимателя, выдающегося изобретателя горного дела. А. А. Износков родился в дворянской семье. Статский советник, автор изобретений в производстве стальных бронебойных артиллерийских снарядов различного калибра и формы. В 1887 г. учредил в С.-Петербурге Общество горных инженеров и активно участвовал в его деятельности. С 1901 г. — председатель правления Русского товарищества торговли металлами «Износков, Зуккау и Ко».

Старт к Марсу

1 ноября 1962 г. в Советском Союзе запущена автоматическая межпланетная станция «Марс-1». Проект станции был разработан в ОКБ-1. Запуск был осуществлен ракетой-носителем «Молния» с космодрома Байконур. Станция прошла расстояние 106 млн. км. В результате полета «Марса-1» получены и проанализированы новые данные о физических свойствах космических пространств между орбитами планет Земля и Марс; получены данные об интенсивности космического излучения, исследована напряженность магнитных полей Земли и межпланетной среды, изучены потоки ионизированного газа, идущего от Солнца, исследовано распределение метеорного вещества при пересечении двух метеорных потоков.

Стартовый комплекс межконтинентальной ракеты

Владимир Павлович БАРМИН (04.03.1909, Москва — 17.07.1993, там же) — советский ученый, конструктор реактивных пусковых установок, ракетно-космических и боевых стартовых комплексов. С 1941 г. — главный конструктор Специального конструкторского бюро при московском заводе «Компрессор». Бармин занимался созданием пусковых установок для реактивных снарядов «катюша». За годы войны под его руководством были разработаны и изготовлены 78 типов экспериментальных и опытных конструкций пусковых установок — «катюш», из которых 36 типов были приняты на вооружение Красной Армии и Военно-морского флота. Эти установки монтировались на автомобилях, железнодорожных платформах, морских и речных катерах и даже на санях. С 1947 г. под руководством Бармина были разработаны стартовые комплексы для многих ракет конструкции Королёва: от Р-1 до Р-11, включая Р-5М — первой стратегической ракеты с ядерным боезарядом. В 1957 г. завершены работы над стартовым комплексом первой в мире баллистической межконтинентальной ракеты Р-7, которая вывела на орбиту Земли первый искусственный спутник Земли и первого космонавта Юрия Гагарина. Под его руководством были разработаны и созданы стартовые комплексы для ракет-носителей «Протон» и многоразовой ракетно-космической системы «Энергия-Буран». Основатель и первый заведующий кафедрой «Стартовые ракетные комплексы»  МГТУ им. Н. Э. Баумана. КБ Бармина разработало оставшийся нереализованным первый в мире детальный проект лунной базы  «Звезда».

Похоронен на Новодевичьем кладбище в Москве. Именем Бармина назван астероид 22254 Vladbarmin, улица, сквер, где ему был установлен памятник, и школа в Байконуре.

Стенд для огневых испытаний ракет

Константин Иванович КОНСТАНТИНОВ (06.04.1818, Варшава — 12.01.1871, Николаев) — русский ученый и изобретатель в области артиллерии, ракетной техники, приборостроения и автоматики, генерал-лейтенант. Сын великого князя Константина Романова. Читал курс лекций «О боевых ракетах»  для артиллерийских офицеров в Михайловской артиллерийской академии. Высочайшим указом 5 марта 1850 г. полковник Константинов назначен командиром Петербургского ракетного заведения — первого в России промышленного предприятия по производству боевых ракет (основан в 1826 г.). Опубликованный в Париже курс лекций Константинова в 1861 г. на французском и в 1864 г. — на русском языке в то время был единственной в мире фундаментальной монографией по данной теме. Книга была высоко оценена в научных кругах, в т. ч. Парижской академией наук. Автор был удостоен премии Михайловской артиллерийской академии. Руководил строительством Николаевского ракетного завода, и с 1867 г. — его работой. Создал первый в мире стенд для огневых испытаний ракет с измерительной системой — электробаллистическим маятником , на котором установил закон изменения движущей силы ракеты  во времени.

Заложил научные основы расчета и проектирования ракет. Проектировал оптимальные параметры ракет, способы их стабилизации в полете, способы крепления и отделения на траектории головных частей ракет, составы ракетных порохов, улучшал технологию производства и сборки ракет, механизации и безопасности их изготовления. Создал боевые ракеты совершенной для XIX в. конструкции с дальностью полета 4–5 км, пусковые устройства и машины для производства ракет, разработал технологический процесс изготовления ракет с применением автоматического контроля и управления отдельными операциями; рекомендовал новые приемы применения ракет в военном деле. Предложил применять ракеты для переброски троса в китобойном промысле. Автор многих работ по различным вопросам ракетной техники. Его именем назван кратер на Луне.

Похоронен в склепе семьи Константина Романова в с. Нивное Мглинского у. Черниговской губ. Прах великого предшественника наших ракетчиков был выброшен большевиками на улицу, но позже перезахоронен местными жителями вблизи церкви.

Структурная кристаллография

Один из основоположников современной структурной кристаллографии, геометр, петрограф, минералог и геолог, академик Российской АН Евграф Степанович ФЁДОРОВ (10.12.1853, Оренбург — 21.05.1919, Петроград) родился в семье генерал-майора инженерных войск. В классической работе «Симметрия правильных систем фигур» предложил систематику геометрических законов, по которым располагаются частицы внутри кристаллических структур, предусматривающую 230 пространственных групп симметрии кристаллов (федоровские группы симметрии кристаллов), в которые укладывались все изученные до 80-х годов XX в. кристаллические структуры. Создал прибор для измерения углов на кристаллах. Основоположник кристаллохимического анализа, решил известную с древности задачу о возможных симметричных фигурах. Фёдоров создал учение об общих законах совершенствования в природе — перфекционизм, сделав попытку сформулировать универсальные научные законы функционирования объектов, имеющих сложную организацию, предвосхитив на четверть века первые работы по кибернетическим и системным проблемам в России и почти на полстолетия — начало разработки системной проблематики на Западе.

Студенческие спутники

С запущенного в космос 26 октября 1978 г. искусственного спутника Земли «Космос-1045» в качестве попутного груза были выведены на орбиту ИСЗ «Радио-1» и «Радио-2». Это были первые студенческие спутники, разработанные и собранные творческим коллективом радиолюбителей ДОСААФ СССР и студенческим конструкторским бюро «Искра» Московского авиационного института, предназначенные для проведения экспериментов в области любительской радиосвязи.

Стыковка космического корабля с неконтролируемой станцией

Для спасения станции «Салют-7», связь с которой прервалась, 6 июня 1985 г., стартовал космический корабль «Союз Т-13» с командиром Владимиром Джанибековым и Виктором Савиных. Неуправляемая махина весом 20 т могла при падении наделать бед. Космонавты впервые в мире осуществили стыковку пилотируемого космического корабля с вышедшей из-под контроля орбитальной станцией. Стыковка была успешно проведена с помощью прибора лазерного наведения  КТД-1 разработки Тульского НИИ Приборостроения, используемого в танках Т-90. (Лучший в мире ракетно-пушечный танк Т-90 использует управляемые ракетные снаряды, наводящиеся по лазеру. В свою очередь танк защищен от снарядов с лазерной наводкой: как только на него наведут лазер, танк выпускает по обнаружившему его лазерному лучу ракету.) После перехода на борт станции космонавты восстановили ее работоспособность, а 2 августа 1985 г. совершили выход в открытый космос, где развернули дополнительные панели солнечных батарей.

Стыковка орбитального комплекса «Мир» с американским космическим кораблем «Атлантис»

29 июня 1995 г. впервые была осуществлена стыковка русского орбитального комплекса «Мир» с американским многоразовым транспортным космическим кораблем «Атлантис». Генеральный секретарь ООН Бутрос Гали поздравил Россию и США: «По случаю успешной стыковки космического корабля „Атлантис“ и орбитальной станцией „Мир“ Генеральный секретарь ООН направляет свои поздравления Соединенным Штатам и Российской Федерации. Это достижение не только представляет собой соединение двух впечатляющих технологий, но также свидетельствует о той дистанции, которую две великие нации прошли на пути к взаимопониманию и доверию. Космическая гонка, которая началась с попыток приобрести военное и техническое доминирование, была трансформирована этим мирным совместным предприятием, которое поражает воображение человечества».

Стыковка пилотируемых космических кораблей

16 января 1969 г. первую в мире стыковку пилотируемых космических кораблей — «Союз-4» (позывные «Амур») и «Союз-5» (позывные «Байкал») — совершили Владимир Александрович Шаталов и Борис Валентинович Волынов.

В этот же день первый в мире переход в космосе  из одного космического корабля в другой (из «Союза-4» в «Союз-5») совершили Алексей Станиславович Елисеев и Евгений Васильевич Хрунов. После окончания перехода космические корабли были расстыкованы. Полет кораблей в состыкованном состоянии продолжался 4 ч. 33 мин. 49 с.

Суборбитальный туристический космолет

Выдающийся авиаконструктор Владимир Михайлович МЯСИЩЕВ (15.09.1902, г. Ефремов Тульской губ. — 14.10.1978, Москва) — разработчик тяжелых сверхзвуковых сверхдальних самолетов серии М, базового варианта орбитального корабля «Буран» (15.09.1986). Потрясенные характеристиками его самолетов «Геофизика», «Стратосфера», американцы перекрестили их в «Мистика-1, 2». Профессор МАИ, руководитель Центрального аэрогидродинамического института. В 1937 г. был арестован, работал в «шарашке».

В подмосковном Жуковском в ангаре Экспериментального машиностроительного завода им. Мясищева уже стоит готовый прототип первого в мире суборбитального туристического космолета C-XXI, выводимого на высоту до 17 км самолетом «Геофизика». Космолет C-XXI представляет собой трехместный челнок, напоминающий космический корабль «Буран». Одно место зарезервировано летчику, а два других займут туристы. В полет они отправятся в космических скафандрах — на случай разгерметизации космолета.

Суперпатрон

Барнаульский станкостроительный завод 10 июня 2003 г. завершил разработку и приступил к выпуску суперпатрона повышенного бронебойного действия. При выстреле с дистанции 100 м патрон пробивает пластину из низкоуглеродистой стали толщиной 16 мм. По данным предприятия, патрон не имеет отечественных и зарубежных аналогов. Этим патроном можно снаряжать автомат Калашникова и поражать броню боевых машин пехоты и защищенную живую силу противника без использования гранатометов и крупнокалиберных пулеметов. На 5-й Международной выставке военной техники за разработку суперпатрона завод удостоен золотой медали.

Сценария теория

Всеволод Илларионович ПУДОВКИН (16.02.1893, Пенза — 30.06.1953, Москва). Киноклассик, режиссер фильмов о героических страницах русской истории — «Адмирал Нахимов», «Суворов», «Иван Грозный», лауреат многих премий международных кинофестивалей. Улица, где он жил, названа его именем. Его теорию сценария изучают во всех киношколах мира.

 

Т

Тактика истребительной авиации

В августе 1944 г., выступая в американском конгрессе, президент США Франклин Рузвельт назвал Покрышкина лучшим воздушным асом Второй мировой войны. И дело не только в его боевой результативности самой по себе. Покрышкин разработал, а самое главное, рискуя не только жизнью, но и своим добрым именем, пробил введение в боевую практику совершенно новой для того времени тактики воздушного боя.

Русский военный летчик-ас, командир эскадрильи, полка, дивизии Александр Иванович ПОКРЫШКИН (06.03.1913, Новониколаевск (Новосибирск) — 13.11.1985, Москва) родился в семье рабочего.

19 августа 1944 г. за героические подвиги на фронте командир 9-й истребительной авиационной дивизии 1-го Украинского фронта полковник А. И. Покрышкин, будущий маршал авиации, первым стал трижды героем  Советского Союза. На его боевом счету числилось 59 сбитых самолетов противника.

Он выработал свою знаменитую формулу боя «Высота — скорость — маневр — огонь!». В истории осталось радиообращение к немецким летчикам при появлении в воздухе Покрышкина: «Ахтунг! Ахтунг! Покрышкин ист ин дер люфт!» — «Внимание, внимание! Покрышкин в небе!».

Тактическое окружение всего войска соперника

5 мая 1242 г. на Чудском озере Александр НЕВСКИЙ (30.05.1221(?), г. Переславль-Залесский — 14.11.1263, г. Городец) устроил Ледовое побоище немецким рыцарям Ливонского ордена, который представлял собой прибалтийское отделение Тевтонского ордена.

Перед сражением Александр освободил занятое тевтонами Копорье и Водьскую землю, а затем выбил из Пскова немецкий гарнизон. Сражение произошло на льду Чудского оз. у Вороньего камня.

Тевтонские рыцари были разгромлены. Потери немцев только убитыми составили более 500 рыцарей, прочего войска — «бесчисленное множество». Взято в плен 50 «нарочитых воевод» знатных рыцарей. Орден был вынужден заключить мир, по которому крестоносцы отказывались от притязаний на русские земли, а также передавали часть Латгалии. Победа русского войска предотвратила исчезновение с карты мира Руси, теснимой с востока татарами, как самостоятельного государства.

Второй — западный — фронт против Руси был надолго закрыт. Военные историки долго будут изучать это сражение, высветившее полководческое искусство Александра Невского. В 1242 г. он впервые совершил тактическое окружение всего войска соперника, завершившееся его разгромом (единственный такой случай для всего Средневековья). Впервые тяжеловооруженные рыцари были разбиты главным образом пехотным войском.

Русские в странах Балтии сейчас отмечают 5 апреля как «День Нации». Вот что надо бы отмечать русским в качестве главного государственного праздника!

Танк Второй мировой войны лучший

Всего было произведено более 70 тыс. танков Т-34. Благодаря этим танкам были выиграны главные битвы Великой Отечественной войны, в т. ч. знаменитая битва при Прохоровке. Враг — немецкий генерал-фельдмаршал Клейст — отмечал: «Их Т-34 был лучшим в мире».

Танк первый в мире

Первый в мире танк «Вездеход» испытан в России под Ригой 18 мая 1915 г. До испытаний описанного в энциклопедиях как первого в мире танка английского «Линкольна № 1» оставалось более 3 мес. Машину сконструировал и построил в мастерских расквартированного в Риге Нижегородского пехотного полка 23-летний дворянин, инженер-универсал, изобретатель Александр Александрович ПОРОХОВЩИКОВ (1892–1941). Масса машины 3,5–4 т, экипаж — 1 человек, пулеметное вооружение, противопульное бронирование. Двигатель мощностью 15 кВт, планетарная трансмиссия, комбинированный колесно-гусеничный движитель (одна гусеница и два управляемых колеса) обеспечивали максимальную скорость 25 км/ч.

В документах машина упоминается как «самоход», «усовершенствованный автомобиль», «самодвижущийся экипаж».

В одной из статей Пороховщиков писал: «У каждого русского человека должна быть одна забота — служба Родине!».

Танк Т-34 лучший в мире

Гениальный конструктор танков Михаил Ильич КОШКИН (21.11. 1898 дер. Брынчаги Ярославской губ. — 26.09.1940, Харьковская обл.) — создатель лучшего танка Второй мировой войны, легендарного Т-34, не дожил до Великой Отечественной войны. Его соратники А. А. Морозов и Н. А. Кучеренко довели конструкцию танка до уровня, достаточного для развертывания серийного производства машины в количестве, нужном для победы — более 60 тыс. Постановление о серийном производстве Т-34 на Харьковском паровозостроительном заводе было принято 31 марта 1940 г. Танки Т-34 часто используются теперь у нас как памятники героям Великой Отечественной войны, а один из них стоит памятником своему создателю у дороги вблизи родной деревни Кошкина.

Танцы на льду

Благодаря Людмиле ПАХОМОВОЙ (31.12.1946, Москва — 17.05.1986, там же), русской фигуристке, первой олимпийской чемпионке в танцах на льду, чемпионке мира и Европы, танцы на льду были включены в олимпийскую программу и стали самым зрелищным видом фигурного катания.

Тафономия

Иван Антипович (Антонович) ЕФРЕМОВ (09.04.1908, дер. Вырица Царскосельского у. — 05.10.1972, Москва) — русский писатель-фантаст («Туманность Андромеды», «Час быка»). Основоположник тафономии — нового направления в палеонтологии, позволяющего на основании палеогеологических данных предсказывать места обнаружения ископаемых. Предсказал возможность падения цивилизаций из-за морального износа, духовного оскудения. Его именем назван ежегодный приз журнала «Уральский следопыт» и НПО «Уралгеология» за вклад в отечественную фантастику.

Твердооксидные топливные элементы

27 октября 1998 г. получен патент № 2121191 на генератор на твердооксидных топливных элементах (ТОТЭ) В. И. Щекалова из Российского федерального ядерного центра — ВНИИ технической физики им. академика Е. И. Забабахина, г. Снежинск. Электрохимические генераторы ТОТЭ вместо химического окисления газа окисляют его электрохимическим путем, сразу напрямую генерируя электроэнергию, что позволит довести КПД самых экономичных газовых электростанций с 40 до 70%.

Театр кошек

Юрий КУКЛАЧЁВ (народный артист России) 23 февраля 1990 г. открыл первый в мире и уникальный Театр кошек в Москве. Куклачёв исповедует принцип «Доброта спасет мир». Он говорит: «Нужно лечить добром неокрепшие детские души, чтобы пошедшее в рост поколение не превратилось в холодное, черствое и бездушное, а стало ярким и солнечным».

На его выступлениях дети клянутся быть добрыми, уважать родителей, любить родную страну и скандируют «Рос-си-я». Театр отмечен множеством международных наград, во Франции Куклачёву посвящена глава в учебнике по родному языку для школьников — «Уроки доброты», а в Сан-Марино в знак признания уникального таланта артиста выпустили почтовую марку, посвященную Ю. Куклачёву, ставшему вторым клоуном на планете после Олега Попова, удостоенным такой чести.

Текстология

Русский филолог, основоположник исторического изучения русского языка, древнерусского летописания и литературы Алексей Александрович ШАХМАТОВ (05.06.1864, Нарва — 16.08.1920, Петроград) завершил составление первого нормативного словаря русского языка. Заложил основы текстологии как науки. Действительный член Петербургской АН, профессор Петербургского университета, член Сербской Академии наук, доктор философии Пражского университета, доктор философии Берлинского университета, член-корреспондент Краковской Академии наук, почетный член Витебской ученой архивной комиссии. Участвовал в подготовке реформы русской орфографии, осуществленной в 1917–1918 гг. Выводил восточнославянские языки от «общедревнерусского» языка, дезинтеграция которого, по его мнению, началась уже в VII в.

Телевизионная передача

Первая в мире телевизионная передача состоялась 9 мая 1911 г. С помощью электронно-лучевой трубки в Петербургском университете профессором Борисом Львовичем РОЗИНГОМ — изобретателем первого механизма воспроизведения телевизионного изображения — получены изображения простейших фигур. Профессор использовал систему телевизионной развертки  (построчной передачи) в передающем приборе и электронно-лучевую трубку в приемном аппарате, т. е. впервые установил основной принцип устройства и работы современного телевидения. В июле 1907 г. этот факт был официально зафиксирован как русская привилегия. В 1908 и 1909 гг. открытие нового способа приема изображения в телевидении подтвердили патенты, выданные в Англии и Германии.

Телевизионное изображение невидимой стороны Венеры

Впервые в мире русский спускаемый аппарат автоматической станции «Венера-9» 22 октября 1975 г. передал на Землю телевизионное изображение невидимой в это время с Земли освещенной стороны Венеры. Информация, полученная каждым спускаемым аппаратом, передавалась на свой космический аппарат, ставший к этому времени искусственным спутником Венеры, и ретранслировалась им на Землю.

Телевизионный вещательный стандарт 625 × 50

Московский телецентр первым в мире 16 июня 1949 г. перешел на телевизионный вещательный стандарт с чересстрочной разверткой на 625 строк при 50 полях (25 кадрах) в секунду. Этот стандарт, названный позже европейским, затем был принят в большинстве стран мира.

Телеграф электромагнитный

Первая в мире система электромагнитного телеграфа была успешно продемонстрирована 21 октября 1832 г. в Петербурге ее изобретателем Шиллингом. Русский ученый, электротехник и востоковед Павел Львович ШИЛЛИНГ (05.04.1786, Ревель (Таллин) — 25.07.1837, С.-Петербург) родился в семье офицера русской армии. Кроме входивших в систему физических устройств — изобретенных Шиллингом телеграфных клавишных аппаратов и линии связи, ему необходимо было изобрести и удобный код для передачи сообщений по телеграфу. Оттолкнувшись от известных ему семафорного кода, изобретенного Кулибиным, и нехитрой китайской системы предсказаний И-Цзин, использующей фигуры из шести линий двух типов — непрерывной и прерывистой, Шиллинг создал оптимальный телеграфный код из точек и тире, позволяющий передавать буквы при минимальном числе рабочих знаков. Наш изобретатель отверг многочисленные выгодные предложения продать свой телеграф в Англию или США, считая своим долгом поставить электросвязь именно в России. В 1836 г. он проложил действующую подземную телеграфную линию между крайними помещениями Адмиралтейства в Петербурге.

Модифицированный через пять лет в 1837 г. американским художником Самюэлем Морзе и потерявший при этом свойство оптимальности, телеграфный код из точек и тире стал международным и долго использовался во всем мире. Творчество П. Л. Шиллинга представлено в экспозициях московского Политехнического музея и Центрального музея связи в С.-Петербурге.

Телефакс

Первым шагом к изобретению телефакса было получение 5 мая 1908 г. Ованесом Абгаровичем АДАМЯНОМ (05.02.1879, Баку — 12.09.1932, Ленинград) патента на систему передачи двухцветного изображения по проводам. Он изобрел телефакс, применив к фотографии гениальное изобретение А. С. Попова — радио. В октябре 1921 г. состоялось его выступление на VIII Всероссийском электротехническом съезде с докладом о передаче фотографических изображений на расстояние. За свои изобретения в этой области он был удостоен награды ВСНХ (Высшего совета народного хозяйства СССР). 30 июня 1930 г. Адамян впервые осуществил передачу и прием фоторадиограммы между Москвой и Ленинградом.

Телефонный коммутатор

Павел Михайлович ГОЛУБИЦКИЙ (16.03.1845, Корчевский у. Тверской губ. (по тверским источникам), или дер. Почуево Тарусского у. Калужской губ. (по калужским источникам) — 27.01.1911, Таруса) — русский изобретатель, автор большинства принципиальных изобретений в области телефонии . Изобрел телефон-вибратор, микрофон с угольным порошком , совмещенную телефонно-микрофонную трубку  (ранее говорящий по телефону держал телефонную трубку в одной руке, а микрофонную — в другой), телефон-фонограф , записывающий телефонный разговор, телефонный коммутатор, систему питания телефонов от общего источника  питания (что позволило создавать телефонные сети). Уже в 1880 г. его телефоны работали на российской железной дороге. Многие годы был земским начальником Тарусского у.

Температура самая низкая

На русской внутриконтинентальной антарктической станции «Восток» 21 июля 1983 г. зарегистрирована самая низкая на планете температура — минус 89,2°C. Этот район получил название Полюс холода Земли.

Температура самая низкая в обитаемом месте

6 февраля 1933 г. в Оймяконе (Россия) зафиксирована самая низкая температура  в обитаемом месте Земли — минус 68°C.

Тепловая станция на торфе

В г. Богородске 12 марта 1914 г. пущена в строй электростанция «Электропередача» — первая в мире тепловая станция, работающая на торфяном топливе (ныне — ГРЭС-3). На станции были установлены три турбогенератора по 5000 л. с. Линия передачи Богородск–Москва 70 кВ имела протяженность более 70 км. Электрификация крупных городов — Москвы, Петербурга, Самары, Киева, Риги, Харькова началась в 1897 г. Станция дала в 1914 г. 9 млн. кВт электроэнергии, в 1916 г. — 48 млн. Директором «Электропередачи» в советское время был Г. М. Кржижановский, возглавивший разработку плана ГОЭЛРО. Бывший поселок электростанции «Электропередача» превратился в г. Электрогорск.

Тепловоз

На Октябрьскую железную дорогу 7 ноября 1924 г. вышел первый в мире мощный тепловоз (1000 л. с.), построенный усилиями трех ленинградских заводов — «Красного путиловца», Балтийского и «Электрика» по проекту профессора Электротехнического института Гаккеля. Яков Модестович ГАККЕЛЬ (30.04.1874, Иркутск — 12.12.1945, Ленинград) — русский советский инженер, самолето- и тепловозостроитель, ученый-электротехник.

Тепловоза проект

В 1905 г. русский инженер Н. Г. Кузнецов и полковник А. И. Одинцов выступили в Русском техническом обществе с докладом о проекте тепловоза с электрической передачей, названного ими «локомотив». Предложенная схема локомотива явилась прообразом тепловоза с электрической передачей, получившей в последующем наибольшее распространение. Николаю Кузнецову и Александру Одинцову 24 сентября 1905 г. выдано охранное свидетельство на первый в мире проект тепловоза за 4 года до появления проекта Рудольфа Дизеля в 1909 г. Силовой агрегат тепловоза состоял из двигателя внутреннего сгорания, генератора переменного тока и четырех электромоторов.

Теплоход

В Петербурге, на Выборгской стороне 24 июня 1903 г. спущен на воду первый в мире теплоход (судно с дизельными двигателями) и одновременно — дизель-электроход «Вандал», спроектированный Константином Петровичем БОКЛЕВСКИМ (1862, с. Питомша Скопинского у. Рязанской губ. — 01.06.1928, Ленинград). Постройка первых теплоходов началась в 1902 г. на Сормовском заводе в Н. Новгороде. Товариществом «Бранобель» было заказано сразу три однотипных судна — «Вандал», «Сармат» и «Скиф». Эти суда-танкеры предназначались для перевозки нефти из Рыбинска в С.-Петербург (через Мариинскую систему). Прочный корпус позволял этим судам ходить по Онежскому и Ладожскому озерам. В Питере на сормовский корпус ставили двигатели. Применение дизельных двигателей обеспечивало значительную экономию топлива. Размеры «Вандала» — 74,5 м в длину и 9,5 м в ширину. Судно брало на борт 820 т груза и развивало скорость 13 км/ч.

Теплоходостроение в России развивалось бурными темпами: 10 лет спустя по российским рекам ходили уже более 200 теплоходов. К 1911 г. обществом «И. Любимов и Ко» был построен первый пассажирский теплоход  в мире — колесный теплоход «Урал». Он был мощнее первых теплоходов-танкеров: его двигатели развивали мощность 800 номинальных сил. Россия 8 лет была единственной страной в мире, где существовало теплоходостроение. Успехи в этой области привели к тому, что русские дизельные двигатели стали известны за границей, в Германии теплоходные дизели стали называть русскими двигателями. Только в 1911 г. строительство теплоходов началось в Германии, и в 1912 г. еще в двух странах — Великобритании и Дании.

Термоядерная установка крупнейшая в мире

Крупнейшая в мире термоядерная установка «Токамак-10» с температурой электронов 10 млн. введена в строй 29 июня 1975 г. в Институте атомной энергии им. Курчатова.

Технологии с использованием ядерных взрывов

Создатель технологий с использованием ядерных взрывов Олег Леонидович КЕДРОВСКИЙ (22.12.1918, Харьков — 08.12.2010, Москва) — доктор технических наук, профессор; работал на горнопроходческих работах Метростроя в Москве; был начальником уранового рудника, главным инженером, начальником Управления капитального строительства АО «Висмут» в ГДР; генеральным директором Горного общества «Кварцит» в Румынии; заместителем начальника Главного управления Министерства среднего машиностроения СССР; директором, главным научным сотрудником ВНИПИпромтехнологии; академик РАЕН, Академии горных наук; член правления Ядерного общества России; лауреат Государственных премий (1969, 1980).

О. Л. Кедровский был научным руководителем Государственной программы № 7 «Ядерные взрывы для народного хозяйства». Разработал основы и внедрил новые, не имеющие отечественных и зарубежных аналогов технологии с использованием ядерных взрывов . С их помощью можно сооружать подземные емкости для хранения стратегических запасов жидких полезных ископаемых и захоронения жидких отходов химического и нефтехимического производства, водоемов в засушливых и пустынных районах страны. Использование взрывов способствует активизации добычи нефти и газоконденсата из непродуктивных нефтяных и газовых коллекторов. Ядерные взрывы применяли и для зондирования земной коры (с целью изучения ее геологического строения и прогнозирования геологической разведки полезных ископаемых), для подземной подготовки и дробления крепких горных пород, содержащих урановую и другие руды. Сотрясательные взрывы использовали для дегазации угольных пластов, склонных к внезапным выбросам, чтобы снизить угрозу жизни людей при таких выбросах.

Разработал и внедрил хранилища радиоактивных отходов  (РАО) нового типа — скважин большого диаметра, предложив использовать их для временного хранения отработавшего ядерного топлива на атомных электростанциях.

Разработал технологию тушения горящих газовых скважин ядерным взрывом , использованную на газовых месторождениях в Узбекской ССР «Урта-Булак» в Бухарской обл. 30 сентября 1966 г. (30 кт, глубина 1532 м) и «Памук» в Кашкадарьинской обл. 21 мая 1968 г. (47 кт, глубина 2440 м).

Технология литья высококачественной стали

Металлург Павел Матвеевич ОБУХОВ (30.10.1820, Нижне-Туринский завод Пермской губ. — 01.01.1869, с. Пятра, Молдавия) управлял Златоустовской оружейной фабрикой, основал Князе-Михайловскую оружейную фабрику и крупнейший Обуховский завод в Петербурге, производивший литую сталь и стальные пушки, оснастил завод созданной им уникальной технологией литья, обеспечивавшей производство стали качеством выше стали заводов немецкого промышленника Круппа, признанной в мире за эталон. В 1857 г. Павел Обухов получил привилегию (патент) на изобретенный им способ массового производства тигельной стали высокого качества. На испытаниях 1860–1861 гг. обуховская пушка из этой стали выдержала 4 тыс. выстрелов, тогда как ни одна иностранная пушка не преодолела рубеж 2 тыс. выстрелов. В день четырехтысячного выстрела полигон посетил Александр II. В ответ на вопрос императора, уверен ли он в прочности пушки, Обухов ответил, что готов сесть на нее верхом и так дожидаться юбилейного выстрела.

Тормоз на сжатом воздухе

В активе изобретателя Флорентия Пименовича КАЗАНЦЕВА (06.12.1877, Бугульма — 04.11.1940, Москва) несколько систем автоматических воздушных тормозов, в том числе: двухпроводный воздушный тормоз для пассажирских и нефтеналивных поездов (1909); однопроводный жесткий тормоз с воздухораспределителем (1925), полужесткий тормоз (1927), который назывался «тормоз Казанцева», — первые железнодорожные автоматические тормоза. 31 марта 1925 г. изобретатель получил патент на «Устройство непрерывного автоматического тормоза со сжатым воздухом».

Точки Чернова

«Отец металлографии», творец современных методов тепловой обработки стали, заложивший научные основы сталелитейного дела, Дмитрий Константинович ЧЕРНОВ (20.10.1839, С.-Петербург — 02.01.1921, Ялта) установил критические точки, характеризующиеся внутренними превращениями в стали при нагревании. Знание точек Чернова позволяет создавать сплавы с нужными свойствами. Черновские схемы процессов кристаллизации вошли во все руководства по металлографии и пользуются всемирной известностью. Его имя присвоено золотой медали Академии наук России по физико-химии металлургических процессов и металловедению.

Транзистор

13 января 1922 г. сотрудник Нижегородской радиолаборатории Олег Владимирович ЛОСЕВ (27.04.1903, Тверь — 22.01.1942, Ленинград) открыл усилительные свойства кристаллического детектора из цинкита. На основании этого открытия сконструировал прибор, состоящий из полупроводникового кристалла и двух электродов, позволяющий усиливать слабые электрические сигналы, и назвал его «кристадин». По своим свойствам и конструкции кристадин Лосева не отличается от трехэлектродного полупроводникового прибора, именуемого ныне транзистором.

За повторное изобретение в 1947 г. транзистора в 1956 г. была вручена Нобелевская премия американцу русского происхождения Джону (Ивану) Бардину, лично признавшему приоритет Лосева.

Сегодня транзисторы производятся в мире в миллиардах экземпляров, составляя базу всей современной электроники, и очень трудно найти в мире человека, не окруженного гигантским множеством полупроводниковых элементов, впервые открытых Лосевым, в телефонах, СВЧ-печах, радиоприемниках, телевизорах, плеерах, компьютерах, фотокамерах, утюгах, лампах, часах, принтерах, копирах, сканерах, калькуляторах, кондиционерах, фотоэлементах, системах видеонаблюдения и т. п.

Трансляция цветных панорам с другой планеты

1 марта 1982 г. на Венере сел спускаемый аппарат межпланетной станции «Венера-13», которая стартовала с космодрома Байконур с помощью ракеты-носителя «Протон-К» 30 октября 1981 г.

Впервые проведены трансляция цветных панорам с Венеры, а также забор и анализ грунта на другой планете и передача результатов на Землю. На «Венере-13» было установлено звукозаписывающее устройство, которое зафиксировало звук грома. Это была первая запись звука на другой планете.

Спускаемый аппарат действовал в течение 127 мин. (запланированное время действия было 32 мин.) в окружающей среде с температурой 456°C и давлением 92 земных атмосферы.

Трансплантология

Великий хирург Владимир Петрович ДЕМИХОВ (18.07.1916, хутор Кулини станицы Ярыжинская Новониколаевского у. (совр. Волгоградской обл.) — 22.11.1998, Москва) родился в крестьянской семье.

Родоначальник мировой трансплантологии. Перед тем как второй великий хирург мира Кристиан Барнард 3 декабря 1967 г. впервые в мире осуществил успешную пересадку сердца человеку, он два раза приезжал стажироваться у Демихова, а после операции позвонил Владимиру Петровичу, назвал его своим учителем и в первом же интервью сообщил, что пациент обязан жизнью Владимиру Демихову.

Впервые в мире Демихов выполнил с десяток операций на уровне мировых открытий: в 1937 г. — первое в мире искусственное сердце ; в 1946 г. — первая в мире гетеротопическая пересадка сердца  в грудную полость; в 1946 г. — первая в мире пересадка комплекса «сердце–легкие» ; в 1947 г. — первая в мире пересадка легкого  изолированного; в 1948 г. — первая в мире пересадка печени ; в 1951 г. — первая в мире ортотопическая пересадка сердца без использования искусственного кровообращения с помощью созданного им первого совершенного протеза сердца, работавшего от пневмопривода (пылесоса); в 1952 г. — первое в мире маммарно-коронарное шунтирование ; в 1954 г. — пересадка второй головы собаке.

В 1960 г. Демихов выпустил монографию «Пересадка жизненно важных органов в эксперименте». Она стала единственным в мире руководством по трансплантации. Книга была переведена на несколько языков. Майкл Дебейки — знаменитый хирург, прилетевший в Москву консультировать президента России, попросил отвезти его к могиле великого Демихова. Вышел конфуз: кто такой Демихов — никто не знал. Пришлось быстро узнавать, и тут вышел еще больший конфуз: легендарный хирург оказался жив. В однокомнатной убогой квартире, всеми забытый жалкий пенсионер оказался величайшим ученым с мировым именем. Известный хирург Шумахер назвал Демихова «величайшим экспериментатором человечества». За рубежом Демихову присваивали почетные звания: доктор Лейпцигского университета, доктор медицины в США, член Научного королевского общества в Швеции. Международное общество трансплантации сердца вручило ему грамоту, назвав пионером в области экспериментальной трансплантологии сердца. А в России великий Демихов — не академик и даже не профессор, лишь в 1998 г. он стал лауреатом Государственной премии, награжден орденом «За заслуги перед Отечеством» III ст., но об этом сам уже не знал: был тяжело болен.

Демихов похоронен на Ваганьковском кладбище.

Транспортный агрегат ракет «Тополь-М»

Знаменитые ракеты сухопутного подвижного базирования  «Тополь-М» приобрели мировую славу не в последнюю очередь благодаря уникальной мобильности, обеспечиваемой транспортно-установочным агрегатом, разработанным в КБ «Мотор» под руководством генерального конструктора и генерального директора Александра Васильевича ТИТОВА.

Конструктор А. В. Титов (род. 17.08.1938, г. Дятьково Брянской обл.) — создатель систем транспортно-подъемного оборудования, разработал и внедрил более 500 различных технологических комплексов, в т. ч. для многоразовой космической системы «Энергия-Буран», космической системы «Союз», ракеты «Ангара» и других, имеет несколько патентов на изобретения; профессор кафедры тягачей и амфибийных машин Московского технического университета.

Трансформатор переменного тока. Фотоаппарат для фотографирования солнечного затмения

Иван Филиппович УСАГИН (26.08.1855, с. Тархово Клинского у. Московской обл. — 26.02.1919, Москва) — физик-самоучка, изобретатель фотоаппарата для фотографирования солнечного затмения . Мастер цветной фотографии, автор первых в мире цветных фотоснимков спектров твердых и газообразных тел .

Демонстрировал трансформатор переменного тока на Всероссийской промышленно-художественой выставке (1882). Устройство Усагина представляло собой развитие принципа «дробления света», реализованного в трансформаторе П. Н. Яблочкова. Трансформаторы системы И. Ф. Усагина заняли важное место в системе распределения электрической энергии и ее передачи на расстояние. Через 15 лет, 27 октября 1897 г. Московское общество любителей естествознания, антропологии и этнографии присудило И. Ф. Усагину премию им. В. П. Мошнина за открытие трансформации токов.

Трехступенчатая ракета

Первый пуск трехступенчатой ракеты «Восток», созданной на базе ракеты Р-7, состоялся 23 сентября 1958 г. Ракета позволила осуществить запуск человека в космос и полет к Луне. С помощью ракеты-носителя «Восток» были подняты на орбиту все космические аппараты серии «Восток», «Луна-1» — «Луна-3».

Трудовая демократия

Приоритет в создании форм организации труда под названием «трудовая демократия», получившая с 1970-х гг. XX в. широкое распространение на Западе, принадлежит России. В нашей стране переход целых заводов и фабрик в управление рабочих был известен еще в нач. XIX в.

Навыки общинных и артельных форм труда обеспечили русским людям приоритет самых передовых форм рабочего самоуправления. Исторические факты свидетельствуют, что рабочее самоуправление на предприятиях впервые в мире отмечено в России. Одно из известных, но не самых древних свидетельств относится к 1803 г., когда на Красносельской бумажной фабрике близ Петербурга рабочие заключили с владельцем договор, по которому фабрика в течение долгого срока находилась в управлении самих рабочих (181 человек). Для руководства работами они выбирали из своей среды мастера, сами определяли продолжительность рабочего дня, порядок работы, распределение заработка.

Рабочие были обязаны выделывать из получаемого сырья бумагу установленного качества, которое контролировалось владельцем. Кроме того, рабочие производили за свой счет ремонт фабричных зданий и машин, «кроме знатных в машинах перемен», за это они получали шестую часть стоимости всей произведенной (и проданной) продукции. Владелец не вмешивался в производственный процесс, но со своей стороны был обязан бесперебойно снабжать рабочих сырьем и дровами. Простой в работах из-за отсутствия сырья компенсировался рабочим за счет владельца.

Так фабрика просуществовала около 10 лет, но сменился владелец. И новому фабриканту — помещице Полторацкой — рабочее самоуправление не пришлось по душе. Она стала всячески притеснять рабочих. В ответ они подали жалобу царю с просьбой взять фабрику в казну, а им разрешить по-прежнему самостоятельно управлять фабрикой. Однако правительственные чиновники, ориентированные на Запад, отказали рабочим.

Турбовинтовой пассажирский самолет

Первый полет дальнемагистрального первого в мире турбовинтового пассажирского самолета Ту-114 совершил 15 ноября 1957 г. экипаж летчика-испытателя А. П. Якимова. Фюзеляж имел две палубы. Салон первых выпусков Ту-114 имел три класса, различающихся по комфортабельности: экономический, первый и четыре трехместных купе. На самолете Ту-114 были установлены 32 мировых авиационных рекорда. В то время Ту-114 был самым крупным, самым скоростным и самым мощным (60 тыс. л. с.) авиалайнером в мире. Америка была в шоке. Хрущев прилетел на Ту-114 в США, подогнали трап, но он не достал до выхода из самолета. Пришлось срочно наращивать трап.

Тяжелая дальнебомбардировочная авиация

«Эскадра воздушных кораблей» из 12 бомбардировщиков «Илья Муромец» была создана решением императора Николая II 10 декабря 1914 г. Событие положило начало тяжелой дальнебомбардировочной авиации не только в России, но и во всем мире. За годы Первой мировой войны экипажи эскадры выполнили около 400 боевых вылетов на разведку и бомбардировку объектов противника. С 1999 г. в этот день отмечается День дальней авиации в России.

Тяжелое самолетостроение

4 мая 1916 г. Н. Е. Жуковский получил письмо Августейшего Заведующего авиацией и воздухоплаванием в действующей армии великого князя Александра Михайловича с просьбой оценить целесообразность постройки сверхтяжелого самолета «Святогор», разработанного В. А. Слесаревым. Жуковский дал положительный ответ князю. Созданием самолетов «Русский витязь», «Илья Муромец», «Святогор» русские конструкторы завоевали для России право называться родиной тяжелого самолетостроения.

Авторизуйтесь, чтобы получить возможность оставлять комментарии